MLOps的角色是什么?

MLOps 工程师在组织中的角色

微信搜索关注《Java学研大本营》,加入读者群,分享更多精彩

你有兴趣成为一名 MLOps 工程师吗?今天详细了解 MLOps 工程师角色。

MLOps 工程师在组织中的角色

所以已经建立了一个机器学习模型。它在验证数据集上达到了预期的性能。很高兴能够应用数据科学和机器学习技能来构建此模型。但是,意识到该模型在 Jupyter notebook 中在本地计算机上运行良好(目前)并不是很有帮助。

为了让用户从模型中受益并让企业利用机器学习,必须将模型部署到生产环境中。然而,部署和维护机器学习模型并非没有挑战。在开发环境中表现良好的模型在生产环境中可能会惨败。这可能是由于数据和概念漂移以及其他导致性能下降的因素造成的。

所以意识到:要使机器学习模型有用,必须超越模型构建。这就是 MLOps 发挥作用的地方。今天,将了解 MLOps 以及MLOps 工程师在组织中的角色。

什么是 MLOps?

通常,会发现 MLOps 被定义为将 DevOps 原则应用于机器学习。

随着 DevOps 实践简化了开发和运营团队之间的跨职能协作,软件开发生命周期 (SDLC) 已经变得更好。如果认识从事 DevOps 工作的人,会听过他们谈论 CI/CD 管道、自动化 CI/CD 管道、应用程序监控等。

尽管这可以转移到机器学习应用程序中,但机器学习系统存在一些特定的挑战。构建和运行机器学习机器学习系统是一个更复杂的过程。

所以一般来说,可以将 MLOps 视为构建、部署和维护机器学习系统的一组最佳实践。

有了这个想法,继续了解组织中的 MLOps 工程师的工作。

MLOps 工程师做什么?

可以将 DevOps 实践应用于机器学习系统。如果那是 MLOps,那么 MLOps 工程师就有责任做到这一点!

这是什么意思?一旦数据科学团队构建了模型,MLOps 工程师就会通过以下方式使模型成功运行:

  • 自动化机器学习模型部署

  • 为 ML 管道设置监控

  • 自动化 CI/CD 管道以处理数据、代码和模型更改

  • 设置自动模型再训练

  • 确定所需的自动化水平

与 MLOps 相关的一些挑战

设置监控只能帮助识别何时出现问题。为了获得有关模型不同版本性能的更详细信息,MLOps 工程师经常使用模型版本控制和实验跟踪。

我\提到过 MLOps 工程师会设置具有所需自动化水平的模型再训练。尝试了解与之相关的挑战。

一旦将应用程序部署到生产环境中,模型在生产环境中使用的数据可能与训练它的数据截然不同。结果,这样的模型会表现得很差,经常不得不重新训练。

MLOps 工程师还通过考虑性能下降、数据更改频率和模型再训练成本来处理再训练和再训练过程的自动化。

在一些初创公司中,可能拥有机器学习工程师,也戴着 MLOps 工程师的帽子。而在其他一些公司中,拥有身兼数职的 DevOps 和后端工程师。

一家大型科技公司的 MLOps 可能与早期初创公司的 MLOps 大不相同。MLOps 自动化水平也可能因组织而异。

如果一直在一家初创公司工作,拥有端到端机器学习管道(从模型训练到监控和维护机器学习系统)的所有权,那么也已经是一名 MLOps 工程师了。

对探索 MLOps 工程师这一具有挑战性的角色感到兴奋吗?总结一下需要的技能。

MLOps 技能集和工具:概述

MLOps 工程师通常具有很强的 ML、DevOps 和数据工程技能。

MLOps 工程师在组织中的角色

  • 机器学习技能:编程、机器学习算法和框架的工作知识以及领域知识

  • 软件工程技能:查询和使用数据库、测试 ML 模型、Git 和版本控制、FastAPI 等框架

  • DevOps基础:熟练掌握Docker、Kubernetes等工具

  • 实验跟踪:熟悉MLflow等实验跟踪框架

  • 编排数据管道:使用 Prefect 和 Airflow 等工具设置和自动化数据管道

  • 云基础设施:熟悉 AWS、GCP 等云基础设施提供商和 Terraform 等基础设施即代码工具 (IaC)

学习 MLOps

如果您有兴趣了解有关 MLOps 的更多信息,可以使用以下资源列表来帮助您入门:

  • DataTalks.Club 的 MLOps Zoomcamp:DataTalks.Club 的 MLOps zoomcamp 是一门免费课程,用于学习 MLOps 的所有内容——从模型构建到部署和监控的最佳实践。将通过构建一个项目来学习,将学到的所有知识组合在一起。

  • Coursera 上的 MLOps 专业化:DeepLearning.AI 的机器学习工程生产 (MLOps) 专业化。该专业(包含四门课程)将教如何构建生产级机器学习系统。

  • MLOps GitHub 存储库:一个精选的存储库列表,用于在 MLOps 中升级。

总结

在本文中,介绍了 MLOps 工程师在组织中的首要职责以及关键的 MLOps 技能。

如前所述,并非所有执行 MLOps 的工程师都称为MLOps 工程师。还讨论了 MLOps 自动化水平和实际日常工作的依赖程度如何因组织而异。

与任何其他角色一样,作为一名成功的 MLOps 工程师需要软技能,例如有效的沟通、协作和战略性问题解决。也就是说,如果想尝试成为一名 MLOps 工程师,祝 MLOps 快乐!

推荐书单

《项目驱动零起点学Java》

《项目驱动零起点学Java》共分 13 章,围绕 6 个项目和 258 个代码示例,分别介绍了走进Java 的世界、变量与数据类型、运算符、流程控制、方法、数组、面向对象、异常、常用类、集合、I/O流、多线程、网络编程相关内容。《项目驱动零起点学Java》总结了马士兵老师从事Java培训十余年来经受了市场检验的教研成果,通过6 个项目以及每章的示例和习题,可以帮助读者快速掌握Java 编程的语法以及算法实现。扫描每章提供的二维码可观看相应章节内容的视频讲解。

《项目驱动零起点学Java》贯穿6个完整项目,经过作者多年教学经验提炼而得,项目从小到大、从短到长,可以让读者在练习项目的过程中,快速掌握一系列知识点。

马士兵,马士兵教育创始人,毕业于清华大学,著名IT讲师,所讲课程广受欢迎,学生遍布全球大厂,擅长用简单的语言讲授复杂的问题,擅长项目驱动知识的综合学习。马士兵教育获得在线教育“名课堂”奖、“最受欢迎机构”奖。

赵珊珊,从事多年一线开发,曾为国税、地税税务系统工作。拥有7年一线教学经验,多年线上、线下教育的积累沉淀,培养学员数万名,讲解细致,脉络清晰。

《项目驱动零起点学Java》(马士兵,赵珊珊)【摘要 书评 试读】- 京东图书京东JD.COM图书频道为您提供《项目驱动零起点学Java》在线选购,本书作者:,出版社:清华大学出版社。买图书,到京东。网购图书,享受最低优惠折扣!icon-default.png?t=N658https://item.jd.com/13607758.html

精彩回顾

数据架构演进史(上)

数据架构演进史(下)

开发和测试中常用的7个API工具

大升级,从V4到V5,Midjourney有了这些新突破

AIGC时代,手把手教你使用Midjourney V5

微信搜索关注《Java学研大本营》

访问【IT今日热榜】,发现每日技术热点

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值