题意是求x点上面到坐标轴前k小的距离之和。
因为x只有100000所以直接扫x至于线段我们可以用vector分别存线段起点和终点,对于扫到p的时候,把以p为起点的线段加入主席树,把p-1位终点的线段拿出主席树,然后就是简单询问。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
const int maxn=100005;
int a[maxn],root[maxn],tot;
vector<int >g[maxn],g1[maxn];
typedef long long LL;
struct pi{
LL sum1;
int sum;
int lson;
int rson;
}pp[maxn*20*3];
struct ppi{
int a,b,x;
}pp1[maxn];
void build(int cnt,int l,int r){
pp[cnt].sum=0;
pp[cnt].sum1=0;
if(l==r) return ;
pp[cnt].lson=++tot;
build(tot,l,(l+r)/2);
pp[cnt].rson=++tot;
build(tot,(l+r)/2+1,r);
}
void merg(int qq,int cnt,int n,int p,int k,int k1){
int le,ri,mid;
le=1;
ri=n;
while(le<=ri){
pp[cnt]=pp[qq];
pp[cnt].sum+=k;
pp[cnt].sum1+=k1;
mid=(le+ri)/2;
if(le==ri) return ;
if(p<=mid){
pp[cnt].lson=++tot;
cnt=tot;
qq=pp[qq].lson;
ri=mid;
}
else{
pp[cnt].rson=++tot;
cnt=tot;
qq=pp[qq].rson;
le=mid+1;
}
}
}
int query(int cnt,int le,int ri,int l,int r){
if(l>r) return 0;
if(le>=l&&ri<=r){
return pp[cnt].sum;
}
int s=0,mid;
mid=(le+ri)/2;
if(l<=mid) s+=query(pp[cnt].lson,le,mid,l,r);
if(r>mid) s+=query(pp[cnt].rson,mid+1,ri,l,r);
return s;
}
LL query1(int cnt,int le,int ri,int l,int r){
if(l>r) return 0;
if(le>=l&&ri<=r) return pp[cnt].sum1;
LL s=0;
int mid=(le+ri)/2;
if(l<=mid) s+=query1(pp[cnt].lson,le,mid,l,r);
if(r>mid) s+=query1(pp[cnt].rson,mid+1,ri,l,r);
return s;
}
int get(int cnt,int n,int k){
int le=1,ri=n,mid;
int p=query(cnt,1,n,1,n);
if(p<k){
k=p;
}
while(le<=ri){
mid=(le+ri)/2;
if(query(cnt,1,n,1,mid)>=k) ri=mid-1;
else le=mid+1;
}
return le;
}
int main()
{
int i,j,n,m,x,ppp,aa,b,c;
LL k;
while(cin>>n>>m>>x>>ppp){
for(i=1;i<=x+1;i++){
g[i].clear();
g1[i].clear();
}
tot=0;
root[0]=0;
tot++;
build(0,1,n);
for(i=1;i<=n;i++){
scanf("%d%d%d",&pp1[i].a,&pp1[i].b,&pp1[i].x);
g[pp1[i].a].push_back(i);
g1[pp1[i].b+1].push_back(i);
a[i]=pp1[i].x;
}
sort(a+1,a+1+n);
for(i=1;i<=n;i++){
pp1[i].x=lower_bound(a+1,a+1+n,pp1[i].x)-a;
}
int q;
for(i=1;i<=x;i++){
q=root[i-1];
int p=g[i].size();
for(j=0;j<p;j++){
root[i]=++tot;
merg(q,tot,n,pp1[g[i][j]].x,1,a[pp1[g[i][j]].x]);
q=root[i];
}
int w=g1[i].size();
for(j=0;j<w;j++){
root[i]=++tot;
merg(q,tot,n,pp1[g1[i][j]].x,-1,-a[pp1[g1[i][j]].x]);
q=root[i];
}
if(q==root[i-1]){
root[i]=++tot;
pp[root[i]]=pp[root[i-1]];
}
}
LL pre;
pre=1;
for(i=0;i<m;i++){
scanf("%d%d%d%d",&x,&aa,&b,&c);
k=((LL)aa*pre%c+b)%c;
if(k==0){
printf("0\n");
pre=0;
continue;
}
int p=get(root[x],n,k);
LL qq;
int xx=query(root[x], 1, n,1,p-1);
qq=query1(root[x],1,n,1,p-1);
qq+=(k-xx)*a[p];
if(pre>ppp) qq=qq*2;
printf("%lld\n",qq);
pre=qq;
}
}
}