注:机翻,未校。
Cognitive Science 认知科学
First published Mon Sep 23, 1996; substantive revision Tue Jan 31, 2023
Cognitive science is the interdisciplinary study of mind and intelligence, embracing philosophy, psychology, artificial intelligence, neuroscience, linguistics, and anthropology. Its intellectual origins are in the mid-1950s when researchers in several fields began to develop theories of mind based on complex representations and computational procedures. Its organizational origins are in the mid-1970s when the Cognitive Science Society was formed and the journal Cognitive Science began. Since then, more than one hundred universities in North America, Europe, Asia, and Australia have established cognitive science programs, and many others have instituted courses in cognitive science.
认知科学是一门关于心智和智力的跨学科研究,包括哲学、心理学、人工智能、神经科学、语言学和人类学。它的知识起源于 1950 年代中期,当时多个领域的研究人员开始发展基于复杂表示和计算程序的心智理论。其组织起源于 1970 年代中期,当时认知科学学会成立,《认知科学》杂志开始出版。从那时起,北美、欧洲、亚洲和澳大利亚的 100 多所大学建立了认知科学课程,还有许多其他大学开设了认知科学课程。
1. History 1. 历史
Attempts to understand the mind and its operation go back at least to the Ancient Greeks, when philosophers such as Plato and Aristotle tried to explain the nature of human knowledge. The study of mind remained the province of philosophy until the nineteenth century, when experimental psychology developed. Wilhelm Wundt and his students initiated laboratory methods for studying mental operations more systematically. Within a few decades, however, experimental psychology became dominated by behaviorism, a view that virtually denied the existence of mind. According to behaviorists such as J. B. Watson, psychology should restrict itself to examining the relation between observable stimuli and observable behavioral responses. Talk of consciousness and mental representations was banished from respectable scientific discussion. Especially in North America, behaviorism dominated the psychological scene through the 1950s.
理解心灵及其运作的尝试至少可以追溯到古希腊,当时柏拉图和亚里士多德等哲学家试图解释人类知识的本质。心灵研究一直是哲学的领域,直到 19 世纪实验心理学发展起来。Wilhelm Wundt 和他的学生开创了更系统地研究心理运作的实验室方法。然而,在几十年内,实验心理学变得由行为主义主导,这种观点几乎否认了心智的存在。根据 J. B. Watson 等行为学家的说法,心理学应该将自身局限于研究可观察刺激和可观察行为反应之间的关系。关于意识和心理表征的讨论被排除在受人尊敬的科学讨论之外。尤其是在北美,行为主义在整个 1950 年代主导了心理学界。
Around 1956, the intellectual landscape began to change dramatically. George Miller summarized numerous studies which showed that the capacity of human thinking is limited, with short-term memory, for example, limited to around seven items. He proposed that memory limitations can be overcome by recoding information into chunks, mental representations that require mental procedures for encoding and decoding the information. At this time, primitive computers had been around for only a few years, but pioneers such as John McCarthy, Marvin Minsky, Allen Newell, and Herbert Simon were founding the field of artificial intelligence. In addition, Noam Chomsky rejected behaviorist assumptions about language as a learned habit and proposed instead to explain language comprehension in terms of mental grammars consisting of rules. The six thinkers mentioned in this paragraph can be viewed as the founders of cognitive science.
1956 年左右,知识界的格局开始发生巨大变化。乔治·米勒 (George Miller 总结了大量研究表明,人类的思维能力是有限的,例如,短期记忆仅限于大约七个项目。他提出,可以通过将信息重新编码为块来克服内存限制,这些块是需要对信息进行编码和解码的心理表征。此时,原始计算机只存在了几年,但约翰·麦卡锡、马文·明斯基、艾伦·纽维尔和赫伯特·西蒙等先驱们正在开创人工智能领域。此外,诺姆·乔姆斯基 (Noam Chomsky 拒绝了行为主义关于语言是一种习得习惯的假设,而是提出用由规则组成的心理语法来解释语言理解。本段提到的六位思想家可以被视为认知科学的奠基人。
2. Methods 2. 方法
Cognitive science has unifying theoretical ideas, but we have to appreciate the diversity of outlooks and methods that researchers in different fields bring to the study of mind and intelligence. Although cognitive psychologists today often engage in theorizing and computational modeling, their primary method is experimentation with human participants. People, often undergraduates satisfying course requirements, are brought into the laboratory so that different kinds of thinking can be studied under controlled conditions. For example, psychologists have experimentally examined the kinds of mistakes people make in deductive reasoning, the ways that people form and apply concepts, the speed of people thinking with mental images, and the performance of people solving problems using analogies. Our conclusions about how the mind works must be based on more than “common sense” and introspection, since these can give a misleading picture of mental operations, many of which are not consciously accessible. Increasingly, psychologists draw their experimental participants from Amazon’s Mechanical Turk and from culturally diverse sources. Psychological experiments that carefully approach mental operations from diverse directions are therefore crucial for cognitive science to be scientific. Experimentation is also a methodology employed by experimental philosophy.
认知科学具有统一的理论思想,但我们必须欣赏不同领域的研究人员为心智和智力研究带来的观点和方法的多样性。尽管今天的认知心理学家经常从事理论化和计算建模,但他们的主要方法是对人类参与者进行实验。人们,通常是满足课程要求的本科生,被带到实验室,以便在受控条件下研究不同类型的思维。例如,心理学家已经实验性地研究了人们在演绎推理中犯的错误类型、人们形成和应用概念的方式、人们用心理图像思考的速度以及人们使用类比解决问题的表现。我们关于大脑如何运作的结论必须基于不仅仅是 “常识 ”和内省,因为这些可能会给出一个误导性的心理操作画面,其中许多是有意识的。心理学家越来越多地从亚马逊的 Mechanical Turk 和多元文化来源中吸引他们的实验参与者。因此,从不同方向仔细处理心理操作的心理学实验对于认知科学的科学性至关重要。实验也是实验哲学采用的一种方法。
Although theory without experiment is empty, experiment without theory is blind. To address the crucial questions about the nature of mind, the psychological experiments need to be interpretable within a theoretical framework that postulates mental representations and procedures. One of the best ways of developing theoretical frameworks is by forming and testing computational models intended to be analogous to mental operations. To complement psychological experiments on deductive reasoning, concept formation, mental imagery, and analogical problem solving, researchers have developed computational models that simulate aspects of human performance. Designing, building, and experimenting with computational models is the central method of artificial intelligence (AI), the branch of computer science concerned with intelligent systems. Ideally in cognitive science, computational models and psychological experimentation go hand in hand, but much important work in AI has examined the power of different approaches to knowledge representation in relative isolation from experimental psychology.
虽然没有实验的理论是空的,但没有理论的实验是盲目的。为了解决关于心智本质的关键问题,心理学实验需要在假设心理表征和程序的理论框架内进行解释。开发理论框架的最佳方法之一是形成和测试旨在类似于心理操作的计算模型。为了补充演绎推理、概念形成、心理意象和类比问题解决方面的心理学实验,研究人员开发了模拟人类表现方面的计算模型。设计、构建和试验计算模型是人工智能 (AI 的核心方法,人工智能 (AI 是计算机科学的一个分支,涉及智能系统。理想情况下,在认知科学中,计算模型和心理学实验是齐头并进的,但人工智能领域的许多重要工作已经研究了在相对孤立于实验心理学的情况下,不同方法对知识表示的力量。
While some linguists do psychological experiments or develop computational models, most currently use different methods. For linguists in the Chomskian tradition, the main theoretical task is to identify grammatical principles that provide the basic structure of human languages. Identification takes place by noticing subtle differences between grammatical and ungrammatical utterances. In English, for example, the sentences “She hit the ball” and “What do you like?” are grammatical, but “She the hit ball” and “What does you like?” are not. A grammar of English will explain why the former are acceptable but not the latter. An alternative approach, cognitive linguistics, puts less emphasis on syntax and more on semantics and concepts.
虽然一些语言学家进行心理实验或开发计算模型,但大多数语言学家目前使用不同的方法。对于乔姆斯基传统的语言学家来说,主要的理论任务是确定提供人类语言基本结构的语法原则。通过注意语法和非语法话语之间的细微差异来进行识别。例如,在英语中,句子 “She hit the ball” 和 “What do you like?” 是语法上的,但 “She the hit ball” 和 “What does you like?” 不是。英语语法将解释为什么前者是可以接受的,而后者是不可接受的。另一种方法,认知语言学,不太强调语法,而更多地强调语义和概念。
Like cognitive psychologists, neuroscientists often perform controlled experiments, but their observations are very different, since neuroscientists are concerned directly with the nature of the brain. With nonhuman subjects, researchers can insert electrodes and record the firing of individual neurons. With humans for whom this technique would be too invasive, it is now common to use magnetic and positron scanning devices to observe what is happening in different parts of the brain while people are doing various mental tasks. For example, brain scans have identified the regions of the brain involved in mental imagery and word interpretation. Additional evidence about brain functioning is gathered by observing the performance of people whose brains have been damaged in identifiable ways. A stroke, for example, in a part of the brain dedicated to language can produce deficits such as the inability to utter sentences. Like cognitive psychology, neuroscience is often theoretical as well as experimental, and theory development is frequently aided by developing computational models of the behavior of groups of neurons.
像认知心理学家一样,神经科学家经常进行对照实验,但他们的观察结果却大不相同,因为神经科学家直接关注大脑的性质。对于非人类受试者,研究人员可以插入电极并记录单个神经元的放电。对于这种技术侵入性太大的人类,现在通常使用磁性和正电子扫描设备来观察人们在执行各种脑力任务时大脑不同部位发生的事情。例如,脑部扫描已经确定了大脑中涉及心理意象和单词解释的区域。通过观察大脑以可识别的方式受损的人的表现,可以收集有关大脑功能的其他证据。例如,大脑中专门用于语言的部分中风会产生缺陷,例如无法说出句子。与认知心理学一样,神经科学通常是理论和实验的,理论发展经常通过开发神经元群行为的计算模型来提供帮助。
Cognitive anthropology expands the examination of human thinking to consider how thought works in different cultural settings. The study of mind should obviously not be restricted to how English speakers think but should consider possible differences in modes of thinking across cultures. Cognitive science is becoming increasingly aware of the need to view the operations of mind in particular physical and social environments. For cultural anthropologists, the main method is ethnography, which requires living and interacting with members of a culture to a sufficient extent that their social and cognitive systems become apparent. Cognitive anthropologists have investigated, for example, the similarities and differences across cultures in words for colors.
认知人类学扩展了对人类思维的考察,以考虑思维在不同文化环境中是如何运作的。显然,对心灵的研究不应该局限于说英语的人如何思考,而应该考虑不同文化的思维模式可能存在的差异。认知科学越来越意识到需要观察特定物理和社会环境中的心理运作。对于文化人类学家来说,主要方法是民族志,它要求与一种文化的成员生活和互动,使其足够程度地使他们的社会和认知系统变得明显。例如,认知人类学家研究了不同文化中颜色词的相似性和差异性。
Traditionally, philosophers do not perform systematic empirical observations or construct computational models, although there has been a rise in work in experimental philosophy. But philosophy remains important to cognitive science because it deals with fundamental issues that underlie the experimental and computational approach to mind. Abstract questions such as the nature of representation and computation need not be addressed in the everyday practice of psychology or artificial intelligence, but they inevitably arise when researchers think deeply about what they are doing. Philosophy also deals with general questions such as the relation of mind and body and with methodological questions such as the nature of explanations found in cognitive science. In addition, philosophy concerns itself with normative questions about how people should think as well as with descriptive ones about how they do. Besides the theoretical goal of understanding human thinking, cognitive science can have the practical goal of improving it, which requires normative reflection on what we want thinking to be. Philosophy of mind does not have a distinct method, but should share with the best theoretical work in other fields a concern with empirical results.
传统上,哲学家不进行系统的经验观察或构建计算模型,尽管实验哲学的工作有所增加。但哲学对认知科学仍然很重要,因为它涉及构成心灵实验和计算方法基础的基本问题。诸如表示和计算的性质等抽象问题不需要在心理学或人工智能的日常实践中解决,但当研究人员深入思考他们正在做什么时,它们不可避免地会出现。哲学还涉及一般问题,例如身心的关系,以及方法论问题,例如认知科学中发现的解释的性质。此外,哲学关注关于人们应该如何思考的规范性问题,以及关于他们如何思考的描述性问题。除了理解人类思维的理论目标外,认知科学还可以有改进它的实际目标,这需要对我们希望的思维是什么进行规范性反思。心灵哲学没有一个独特的方法,但应该与其他领域最好的理论著作一样关注实证结果。
In its weakest form, cognitive science is just the sum of the fields mentioned: psychology, artificial intelligence, linguistics, neuroscience, anthropology, and philosophy. Interdisciplinary work becomes much more interesting when there is theoretical and experimental convergence on conclusions about the nature of mind. For example, psychology and artificial intelligence can be combined through computational models of how people behave in experiments. The best way to grasp the complexity of human thinking is to use multiple methods, especially psychological and neurological experiments and computational models. Theoretically, the most fertile approach has been to understand the mind in terms of representation and computation.
在最弱的形式中,认知科学只是上述领域的总和:心理学、人工智能、语言学、神经科学、人类学和哲学。当关于心智本质的结论存在理论和实验趋同时,跨学科工作就会变得更加有趣。例如,心理学和人工智能可以通过人们在实验中行为的计算模型来结合。掌握人类思维复杂性的最好方法是使用多种方法,尤其是心理学和神经学实验以及计算模型。从理论上讲,最丰富的方法是从表示和计算的角度来理解心智。
3. Representation and Computation 3. 表示和计算
The central hypothesis of cognitive science is that thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures. While there is much disagreement about the nature of the representations and computations that constitute thinking, the central hypothesis is general enough to encompass the current range of thinking in cognitive science, including connectionist theories which model thinking using artificial neural networks.
认知科学的中心假设是,最好从头脑中的表征结构和在这些结构上运行的计算程序来理解思维。虽然对构成思维的表示和计算的性质存在很多分歧,但中心假设足够普遍,足以涵盖当前认知科学的思维范围,包括使用人工神经网络对思维进行建模的连接主义理论。
Most work in cognitive science assumes that the mind has mental representations analogous to computer data structures, and computational procedures similar to computational algorithms. Cognitive theorists have proposed that the mind contains such mental representations as logical propositions, rules, concepts, images, and analogies, and that it uses mental procedures such as deduction, search, matching, rotating, and retrieval. The dominant mind-computer analogy in cognitive science has taken on a novel twist from the use of another analog, the brain.
认知科学的大多数工作都假设大脑具有类似于计算机数据结构的心理表征,以及类似于计算算法的计算程序。认知理论家提出,心智包含逻辑命题、规则、概念、图像和类比等心理表征,并且它使用演绎、搜索、匹配、旋转和检索等心理程序。认知科学中占主导地位的心智-计算机类比与另一个类比大脑的使用相比有了新的变化。
Connectionists have proposed novel ideas about representation and computation that use neurons and their connections as inspirations for data structures, and neuron firing and spreading activation as inspirations for algorithms. Cognitive science then works with a complex 3-way analogy among the mind, the brain, and computers. Mind, brain, and computation can each be used to suggest new ideas about the others. There is no single computational model of mind, since different kinds of computers and programming approaches suggest different ways in which the mind might work. The computers that most of us work with today are serial processors, performing one instruction at a time, but the brain and some recently developed computers are parallel processors, capable of doing many operations at once.
连接主义者提出了关于表示和计算的新想法,这些想法使用神经元及其连接作为数据结构的灵感,将神经元放电和传播激活作为算法的灵感。然后,认知科学在心灵、大脑和计算机之间进行复杂的 3 向类比。思想、大脑和计算都可以用来提出关于其他事物的新想法。没有单一的心智计算模型,因为不同类型的计算机和编程方法暗示了心智可能以不同的方式工作。我们今天大多数人使用的计算机是串行处理器,一次执行一条指令,但大脑和一些最近开发的计算机是并行处理器,能够同时执行许多操作。
A major trend in current cognitive science is the integration of neuroscience with many areas of psychology, including cognitive, social, developmental, and clinical. This integration is partly experimental, resulting from an explosion of new instruments for studying the brain, such as functional magnetic resonance imaging, transcranial magnetic stimulation, and optogenetics. The integration is also theoretical, because of advances in understanding how large populations of neurons can perform tasks usually explained with cognitive theories of rules and concepts.
当前认知科学的一个主要趋势是神经科学与心理学的许多领域的整合,包括认知、社会、发展和临床。这种整合部分是实验性的,是由于用于研究大脑的新仪器的爆炸式增长,例如功能性磁共振成像、经颅磁刺激和光遗传学。这种整合也是理论上的,因为在理解大量神经元如何执行通常用规则和概念的认知理论来解释的任务方面取得了进展。
4. Theoretical Approaches 4. 理论方法
Here is a schematic summary of current theories about the nature of the representations and computations that explain how the mind works.
以下是当前关于解释大脑如何运作的表征和计算性质的理论的示意图总结。
4.1 Formal logic 4.1 形式化逻辑
Formal logic provides some powerful tools for looking at the nature of representation and computation. Propositional and predicate calculus serve to express many complex kinds of knowledge, and many inferences can be understood in terms of logical deduction with inferences rules such as modus ponens. The explanation schema for the logical approach is:
形式化逻辑为研究表示和计算的性质提供了一些强大的工具。命题和谓词演算用于表达许多复类的知识,许多推理可以通过推理规则(如 modus ponens)用逻辑演绎来理解。逻辑方法的解释架构为:
Explanation target:
解释目标
- Why do people make the inferences they do?
人们为什么要做出他们所做的推断?
Explanatory pattern:
解释性模式
- People have mental representations similar to sentences in predicate logic.
人们的心理表征类似于谓词逻辑中的句子。- People have deductive and inductive procedures that operate on those sentences.
人们有对这些句子进行手术的演绎和归纳程序。- The deductive and inductive procedures, applied to the sentences, produce the inferences.
应用于句子的演绎和归纳程序产生推理。
It is not certain, however, that logic provides the core ideas about representation and computation needed for cognitive science, since more efficient and psychologically natural methods of computation may be needed to explain human thinking. (See the entry on logic and artificial intelligence.)
然而,逻辑是否提供了认知科学所需的关于表征和计算的核心思想并不确定,因为可能需要更有效和心理上自然的计算方法来解释人类思维。
4.2 Rules 4.2 规则
Much of human knowledge is naturally described in terms of rules of the form IF … THEN …, and many kinds of thinking such as planning can be modeled by rule-based systems. The explanation schema used is:
许多人类知识自然而然地用 IF …THEN …,许多类型的思维(如规划)都可以由基于规则的系统建模。使用的解释架构是:
Explanation target:
- Why do people have a particular kind of intelligent behavior?
为什么人们有一种特殊的智能行为?
Explanatory pattern:
- People have mental rules.
人们有心理规则。- People have procedures for using these rules to search a space of possible solutions, and procedures for generating new rules.
人们有使用这些规则来搜索可能的解决方案空间的程序,以及生成新规则的程序。- Procedures for using and forming rules produce the behavior.
使用和形成规则的过程会产生行为。
Computational models based on rules have provided detailed simulations of a wide range of psychological experiments, from cryptarithmetic problem solving to skill acquisition to language use. Rule-based systems have also been of practical importance in suggesting how to improve learning and how to develop intelligent machine systems.
基于规则的计算模型提供了各种心理学实验的详细模拟,从密码算术问题解决到技能习得再到语言使用。基于规则的系统在建议如何改进学习和如何开发智能机器系统方面也具有实际重要性。
4.3 Concepts 4.3 概念
Concepts, which partly correspond to the words in spoken and written language, are an important kind of mental representation. There are computational and psychological reasons for abandoning the classical view that concepts have strict definitions. Instead, concepts can be viewed as sets of typical features. Concept application is then a matter of getting an approximate match between concepts and the world. Schemas and scripts are more complex than concepts that correspond to words, but they are similar in that they consist of bundles of features that can be matched and applied to new situations. The explanatory schema used in concept-based systems is: (See the entry on concepts.)
概念,部分对应于口语和书面语言中的单词,是一种重要的心理表征。放弃概念具有严格定义的经典观点有计算和心理学上的原因。相反,概念可以被视为典型特征的集合。然后,概念应用程序就是在概念和世界之间获得近似匹配的问题。模式和脚本比与单词对应的概念更复杂,但它们的相似之处在于它们由可以匹配并应用于新情况的特征包组成。基于概念的系统中使用的解释模式是:
Explanatory target:
- Why do people have a particular kind of intelligent behavior?
为什么人们有一种特殊的智能行为?
Explanation pattern:
- People have a set of concepts, organized via kind and part hierarchies and other associations.
人们有一组概念,通过种类和部分层次结构和其他关联进行组织。- People have a set of procedures for concept application, including spreading activation, matching, and inheritance.
人们有一套概念应用的流程,包括扩展激活、匹配和继承。- The procedures applied to the concepts produce the behavior.
应用于概念的过程会产生行为。- Concepts can be translated into rules, but they bundle information differently than sets of rules, making possible different computational procedures.
概念可以转换为规则,但它们与规则集不同地捆绑信息,从而可能使用不同的计算过程。
4.4 Analogies 4.4 类比
Analogies play an important role in human thinking, in areas as diverse as problem solving, decision making, explanation, and linguistic communication. Computational models simulate how people retrieve and map source analogs in order to apply them to target situations. The explanation schema for analogies is:
类比在人类思维中发挥着重要作用,涉及的问题解决、决策、解释和语言交流等多个领域。计算模型模拟人们如何检索和映射源类似物,以便将它们应用于目标情况。类比的解释架构是:
Explanation target:
- Why do people have a particular kind of intelligent behavior?
为什么人们有一种特殊的智能行为?
Explanatory pattern:
- People have verbal and visual representations of situations that can be used as cases or analogs.
人们有情况的口头和视觉表示,可以用作案例或类似物。- People have processes of retrieval, mapping, and adaptation that operate on those analogs.
人们有检索、映射和适应的过程,这些过程对这些类似物进行操作。- The analogical processes, applied to the representations of analogs, produce the behavior.
应用于类似物表示的类比过程产生了行为。
The constraints of similarity, structure, and purpose overcome the difficult problem of how previous experiences can be found and used to help with new problems. Not all thinking is analogical, and using inappropriate analogies can hinder thinking, but analogies can be effective in applications such as education and design.
相似性、结构和目的的约束克服了如何找到并利用以前的经验来帮助解决新问题的难题。并非所有的思维都是类比的,使用不适当的类比会阻碍思考,但类比在教育和设计等应用中可能很有效。
4.5 Images 4.5 图片
Visual and other kinds of images play an important role in human thinking. Pictorial representations capture visual and spatial information in a much more usable form than lengthy verbal descriptions. Computational procedures well suited to visual representations include inspecting, finding, zooming, rotating, and transforming. Such operations can be very useful for generating plans and explanations in domains to which pictorial representations apply. The explanatory schema for visual representation is:
视觉和其他类型的图像在人类思维中起着重要作用。图片表示以比冗长的口头描述更有用的形式捕获视觉和空间信息。非常适合视觉表示的计算过程包括检查、查找、缩放、旋转和变换。此类操作对于在图形表示适用的域中生成计划和解释非常有用。视觉表示的解释性架构为:
Explanation target:
- Why do people have a particular kind of intelligent behavior?
为什么人们有一种特殊的智能行为?
Explanatory pattern:
- People have visual images of situations.
人们有情况的视觉图像。- People have processes such as scanning and rotation that operate on those images.
人们有扫描和旋转等过程可以对这些图像进行操作。- The processes for constructing and manipulating images produce the intelligent behavior.
构建和处理图像的过程会产生智能行为。
Imagery can aid learning, and some metaphorical aspects of language may have their roots in imagery. Psychological experiments suggest that visual procedures such as scanning and rotating employ imagery, and neurophysiological results confirm a close physical link between reasoning with mental imagery and perception. Imagery is not just visual, but can also operate with other sensory experiences such as hearing, touch, smell, taste, pain, balance, nausea, fullness, and emotion.
意象可以帮助学习,语言的一些隐喻方面可能源于意象。心理学实验表明,扫描和旋转等视觉程序使用意象,神经生理学结果证实了推理与心理意象和感知之间存在密切的物理联系。意象不仅仅是视觉上的,还可以与其他感官体验一起运作,例如听觉、触觉、嗅觉、味觉、疼痛、平衡、恶心、饱腹感和情绪。
4.6 Connectionism 4.6 联结主义
Connectionist networks consisting of simple nodes and links are very useful for understanding psychological processes that involve parallel constraint satisfaction. Such processes include aspects of vision, decision making, explanation selection, and meaning making in language comprehension. Connectionist models can simulate learning by methods that include Hebbian learning and backpropagation. The explanatory schema for the connectionist approach is:
由简单节点和链接组成的连接主义网络对于理解涉及并行约束满足的心理过程非常有用。这些过程包括视觉、决策、解释选择和语言理解中的意义构建方面。连接主义模型可以通过包括 Hebbian 学习和反向传播在内的方法来模拟学习。连接主义方法的解释模式是:
Explanation target:
- Why do people have a particular kind of intelligent behavior?
为什么人们有一种特殊的智能行为?
Explanatory pattern:
- People have representations that involve simple processing units linked to each other by excitatory and inhibitory connections.
人们的表征涉及简单的处理单元,这些单元通过兴奋性和抑制性连接相互联系。- People have processes that spread activation between the units via their connections, as well as processes for modifying the connections.
人们有通过他们的连接在单元之间传播激活的流程,以及修改连接的流程。- Applying spreading activation and learning to the units produces the behavior.
将传播激活和学习应用于单元会产生行为。
Simulations of various psychological experiments have shown the psychological relevance of the connectionist models, which are, however, only very rough approximations to actual neural networks. (For more information, see the entry on connectionism.)
各种心理学实验的模拟表明了连接主义模型的心理相关性,然而,这些模型只是对实际神经网络的非常粗略的近似。
4.7 Theoretical neuroscience 4.7 理论神经科学
Theoretical neuroscience is the attempt to develop mathematical and computational theories and models of the structures and processes of the brains of humans and other animals. It differs from connectionism in trying to be more biologically accurate by modeling the behavior of large numbers of realistic neurons organized into functionally significant brain areas. Computational models of the brain have become biologically richer, both with respect to employing more realistic neurons such as ones that spike and have chemical pathways, and with respect to simulating the interactions among different areas of the brain such as the hippocampus and the cortex. These models are not strictly an alternative to computational accounts in terms of logic, rules, concepts, analogies, images, and connections, but should mesh with them and show how mental functioning can be performed at the neural level. The explanatory schema for theoretical neuroscience is:
理论神经科学是尝试发展人类和其他动物大脑结构和过程的数学和计算理论和模型。它与联结主义的不同之处在于,它试图通过对大量现实神经元的行为进行建模,这些神经元被组织成具有功能意义的大脑区域,从而在生物学上更加准确。大脑的计算模型在生物学上变得更加丰富,无论是在使用更逼真的神经元(例如具有尖峰和化学途径的神经元)方面,还是在模拟大脑不同区域(如海马体和皮层)之间的相互作用方面。这些模型在逻辑、规则、概念、类比、图像和联系方面并不是严格意义上的计算账户的替代品,但应该与它们相吻合,并展示如何在神经水平上执行心理功能。理论神经科学的解释图式是:
Explanation target:
- How does the brain carry out functions such as cognitive tasks?
大脑如何执行认知任务等功能?
Explanatory pattern:
- The brain has neurons organized by synaptic connections into populations and brain areas.
大脑的神经元通过突触连接组织成群体和大脑区域。- The neural populations have spiking patterns that are transformed via sensory inputs and the spiking patterns of other neural populations.
神经种群具有通过感觉输入和其他神经种群的尖峰模式转换的尖峰模式。- Interactions of neural populations carry out functions including cognitive tasks.
神经种群的相互作用执行包括认知任务在内的功能。
From the perspective of theoretical neuroscience, mental representations are patterns of neural activity, and inference is transformation of such patterns. (See the entries on neuroscience and the neuroscience of consciousness.)
从理论神经科学的角度来看,心理表征是神经活动的模式,而推理是这种模式的转换。
4.8 Bayesian 4.8 贝叶斯
Bayesian models are prominent in cognitive science, with applications to such psychological phenomena as learning, vision, motor control, language, and social cognition. They have also had effective applications in robotics. The Bayesian approach assumes that cognition is approximately optimal in accord with probability theory, especially Bayes’ theorem, which says that the probability of a hypothesis given evidence is equal to the result of multiplying the prior probability of the hypothesis by the conditional probability of the evidence given the hypothesis, all divided by the probability of the evidence. The explanatory schema for Bayesian cognition is:
贝叶斯模型在认知科学中很突出,可应用于学习、视觉、运动控制、语言和社会认知等心理现象。它们在机器人技术中也有有效的应用。贝叶斯方法假设认知与概率论,特别是贝叶斯定理相一致,近似是最优的,该定理指出,给定证据的假设的概率等于将假设的先验概率乘以给定假设的证据的条件概率的结果,所有结果除以证据的概率。贝叶斯认知的解释图式是:
Explanation target:
- How does the mind carry out functions such as inference?
大脑如何执行推理等功能?
Explanatory pattern:
- The mind has representations for statistical correlations and conditional probabilities.
大脑具有统计相关性和条件概率的表示。- The mind has the capacity for probabilistic computations such as applications of Bayes’ theorem.
大脑具有概率计算的能力,例如贝叶斯定理的应用。- Applying probabilistic computations to statistical representations accomplishes mental tasks such as inference.
将概率计算应用于统计表示可以完成推理等脑力任务。
Although Bayesian methods have had impressive applications to a wide range of phenomena, their psychological plausibility is debatable because of assumptions about optimality and computations based on probability theory.
尽管贝叶斯方法在广泛的现象中有着令人印象深刻的应用,但由于对最优性的假设和基于概率论的计算,它们的心理学合理性是值得商榷的。
4.9 Deep learning 4.9 深度学习
Artificial intelligence has been a central part of cognitive since the 1950s, and the most dramatic recent advances in AI have come from the approach of deep learning, which has produced major breakthroughs in fields that include game playing, object recognition, and translation. Deep learning builds on ideas from connectionism and theoretical neuroscience, but uses neural networks with more layers and improved algorithms, benefitting from faster computers and large data bases of examples. Another important innovation is combining learning from examples with reinforcement learning, resulting by 2016 in the world’s leading Go player, AlphaGo. Ideas from deep learning are spreading back into neuroscience and also beginning to influence research in cognitive psychology. The explanatory schema for deep learning is:
自 1950 年代以来,人工智能一直是认知的核心部分,人工智能最近最引人注目的进步来自深度学习方法,该方法在游戏、对象识别和翻译等领域取得了重大突破。深度学习建立在联结主义和理论神经科学的思想之上,但使用具有更多层和改进算法的神经网络,受益于更快的计算机和大型示例数据库。另一项重要的创新是从示例中学习与强化学习相结合,到 2016 年,世界领先的围棋选手 AlphaGo 诞生了。深度学习的思想正在传播回神经科学,并开始影响认知心理学的研究。深度学习的解释性架构为:
Explanation target:
- How does the brain carry out functions such as cognitive tasks?
大脑如何执行认知任务等功能?
Explanatory pattern:
- The brain has large numbers of neurons organized into 6–20 layers.
大脑有大量的神经元,分为 6-20 层。- The brain has powerful mechanisms for learning from examples and for learning actions that are reinforced by their successes.
大脑具有强大的机制,可以从例子中学习和学习行动,这些机制会因他们的成功而得到加强。- Applying learning mechanisms to layered neural networks makes them capable of human and sometimes even super-human performance.
将学习机制应用于分层神经网络,使它们能够达到人类甚至超人的性能。
Although deep learning has produced dramatic improvements in some AI systems, it is not clear how it can be applied to aspects of human thought that include causal reasoning, imagery, emotion, and analogy. For further discussion, see Section 11 (on deep learning) of the entry on connectionism.
尽管深度学习在一些 AI 系统中产生了巨大的改进,但目前尚不清楚它如何应用于人类思维的各个方面,包括因果推理、图像、情感和类比。
4.10 Predictive processing and active inference 4.10 预测处理和主动推理
Predictive processing is an approach to theoretical neuroscience that views the brain as constantly generating and updating models of the environment in order to predict the results of perceptions and actions. Active inference is a version of predictive processing that hypothesizes that the brain uses Bayesian calculations to minimize “free energy” consisting of discrepancies between expectations and actual observations. Organisms survive when brains reduce prediction errors by changing their models of the environment or by changing the environment through action.
预测处理是一种理论神经科学方法,它认为大脑不断生成和更新环境模型,以预测感知和行为的结果。主动推理是预测处理的一种版本,它假设大脑使用贝叶斯计算来最小化由预期和实际观察之间的差异组成的“自由能”。当大脑通过改变环境模型或通过行动改变环境来减少预测误差时,生物体就会生存下来。
The explanatory schema for active inference is:
主动推理的解释架构为:
Explanation target:
- How does the brain function to support perception and action?
大脑如何运作来支持感知和行动?
Explanatory pattern:
- The brain is a prediction engine that uses probabilistic models to anticipate perceptions and the results of actions.
大脑是一个预测引擎,它使用概率模型来预测感知和行动的结果。- To reduce prediction error, the brain uses Bayesian updating to change its models and uses actions to change its environment, e.g. by moving.
为了减少预测误差,大脑使用贝叶斯更新来改变其模型,并使用动作来改变其环境,例如通过移动。- Effective inference, perception, and action result from these reductions in prediction errors.
这些预测误差的减少带来了有效的推理、感知和行动。
Active inference is open to numerous challenges. Is brain functioning really Bayesian updating rather than connectionist constraint satisfaction or deep reinforcement learning? Can predictive processing subsume other brain functions that include pattern recognition, explanation, emotional evaluation, memory, and communication? Does active inference explain high-level cognitive operations such as causal reasoning, language, and creativity?
主动推理面临许多挑战。大脑功能真的是贝叶斯更新,而不是连接主义约束满足或深度强化学习吗?预测处理能否包含其他大脑功能,包括模式识别、解释、情绪评估、记忆和沟通?主动推理是否解释了高级认知操作,例如因果推理、语言和创造力?
5. Philosophical Relevance 5. 哲学相关性
Some philosophy, in particular naturalistic philosophy of mind, is part of cognitive science. But the interdisciplinary field of cognitive science is relevant to philosophy in several ways. First, the psychological, computational, and other results of cognitive science investigations have important potential applications to traditional philosophical problems in epistemology, metaphysics, and ethics. Second, cognitive science can serve as an object of philosophical critique, particularly concerning the central assumption that thinking is representational and computational. Third and more constructively, cognitive science can be taken as an object of investigation in the philosophy of science, generating reflections on the methodology and presuppositions of the enterprise.
一些哲学,特别是自然主义的心灵哲学,是认知科学的一部分。但是认知科学的跨学科领域在几个方面与哲学相关。首先,认知科学研究的心理学、计算和其他结果对认识论、形而上学和伦理学中的传统哲学问题具有重要的潜在应用。其次,认知科学可以作为哲学批判的对象,特别是关于思考是表征和计算的中心假设。第三,也是更具建设性的,认知科学可以作为科学哲学中的研究对象,产生对企业的方法论和假设的反思。
5.1 Philosophical Applications 5.1 哲学应用
Much philosophical research today is naturalistic, treating philosophical investigations as continuous with empirical work in fields such as psychology. From a naturalistic perspective, philosophy of mind is closely allied with theoretical and experimental work in cognitive science. Metaphysical conclusions about the nature of mind are to be reached, not by a priori speculation, but by informed reflection on scientific developments in fields such as psychology, neuroscience, and computer science. Similarly, epistemology is not a stand-alone conceptual exercise, but depends on and benefits from scientific findings concerning mental structures and learning procedures. Ethics can benefit by using greater understanding of the psychology of moral thinking to bear on ethical questions such as the nature of deliberations concerning right and wrong. Here are some philosophical problems to which ongoing developments in cognitive science are highly relevant. Links are provided to other relevant articles in this Encyclopedia.
今天的许多哲学研究都是自然主义的,将哲学研究视为与心理学等领域的实证工作相延续。从自然主义的角度来看,心灵哲学与认知科学的理论和实验工作密切相关。关于心灵本质的形而上学结论不是通过先验的猜测,而是通过对心理学、神经科学和计算机科学等领域的科学发展进行明智的反思来得出的。同样,认识论也不是一个独立的概念练习,而是依赖于心理结构和学习程序的科学发现并从中受益。伦理学可以通过对道德思维心理学的更深入理解来影响伦理问题,例如关于对与错的审议的性质,从而受益。以下是一些与认知科学的持续发展高度相关的哲学问题。本百科全书中提供了其他相关文章的链接。
- Innateness. To what extent is knowledge innate or acquired by experience? Is human behavior shaped primarily by nature or nurture?
天生。知识在多大程度上是与生俱来的还是通过经验获得的?人类行为主要是由天生还是后天塑造的? - Language of thought. Does the human brain operate with a language-like code or with a more general connectionist architecture? What is the relation between symbolic cognitive models using rules and concepts and sub-symbolic models using neural networks?
思想的语言。人脑是使用类似语言的代码还是更通用的连接主义架构来运作?使用规则和概念的符号认知模型与使用神经网络的子符号模型之间有什么关系? - Mental imagery. Do human minds think with visual and other kinds of imagery, or only with language-like representations?
心理意象。人类的大脑是用视觉和其他类型的意象来思考,还是只用类似语言的表示来思考? - Folk psychology. Does a person’s everyday understanding of other people consist of having a theory of mind, or of merely being able to simulate them?
民俗心理学。一个人对他人的日常理解是拥有心智理论,还是仅仅能够模拟他们? - Meaning. How do mental representations acquire meaning or mental content? To what extent does the meaning of a representation depend on its relation to other representations, its relation to the world, and its relation to a community of thinkers?
意义。心理表征如何获得意义或心理内容?表征的意义在多大程度上取决于它与其他表征的关系、它与世界的关系以及它与思想家社区的关系? - Mind-brain identity. Are mental states brain states? Or can they be multiply realized by other material states? What is the relation between psychology and neuroscience? Is materialism true?
心脑身份。精神状态是大脑状态吗?或者它们可以被其他物质状态成倍增加实现?心理学和神经科学之间有什么关系?唯物主义是真的吗? - Free will. Is human action free or merely caused by brain events?
自由意志。人类行为是自由的还是仅仅由大脑事件引起的? - Moral psychology. How do minds/brains make ethical judgments?
道德心理学。思想/大脑如何做出道德判断? - The meaning of life. How can minds construed naturalistically as brains find value and meaning?
生命的意义。当大脑被自然主义地解释为大脑时,大脑如何找到价值和意义? - Emotions. What are emotions, and what role do they play in thinking?
情绪。什么是情绪,它们在思考中扮演什么角色? - Consciousness. Can conscious experience be scientifically explained, for example by the neuroscience of consciousness?
意识。意识体验能否用科学来解释,例如用意识的神经科学来解释? - Mental disorder. What are mental disorders, and how are psychological and neural processes relevant to their explanation and treatment?
精神障碍。什么是精神障碍,心理和神经过程如何与它们的解释和治疗相关? - Perception and reality. How do minds/brains form and evaluate representations of the external world?
感知与现实。思想/大脑如何形成和评估外部世界的表征? - Perception and cognition. How does perception differ from other kinds of cognition with respect to representational format and justification?
感知和认知。感知与其他类型的认知在表征格式和理由方面有何不同? - Realism. Is cognitive science consistent with views that minds grasp the real world? Could minds be computer simulations? Is virtual reality a kind of reality?
现实主义。认知科学与头脑掌握现实世界的观点一致吗?头脑可以是计算机模拟吗?虚拟现实是一种现实吗? - Information. How does cognitive science illuminate the operations of information and misinformation in minds and societies?
信息。认知科学如何阐明信息和错误信息在思想和社会中的运作? - Social science. How do explanations of the operations of minds interact with explanations of the operations of groups and societies?
社会科学。对心智运作的解释如何与对群体和社会运作的解释相互作用?
Additional philosophical problems arise from examining the presuppositions of current approaches to cognitive science.
研究当前认知科学方法的假设时,还出现了其他哲学问题。
5.2 Critique of Cognitive Science 5.2 认知科学批判
The claim that human minds work by representation and computation is an empirical conjecture and might be wrong. Although the computational-representational approach to cognitive science has been successful in explaining many aspects of human problem solving, learning, and language use, some philosophical critics have claimed that this approach is fundamentally mistaken. Critics of cognitive science have offered such challenges as:
人类思维通过表示和计算工作的说法是一种实证猜想,可能是错误的。尽管认知科学的计算-表征方法已经成功地解释了人类解决问题、学习和语言使用的许多方面,但一些哲学批评家声称这种方法从根本上是错误的。认知科学的批评者提出了以下挑战:
- The emotion challenge: Cognitive science neglects the important role of emotions in human thinking.
情感挑战:认知科学忽视了情感在人类思维中的重要作用。 - The consciousness challenge: Cognitive science ignores the importance of consciousness in human thinking.
意识挑战:认知科学忽视了意识在人类思维中的重要性。 - The world challenge: Cognitive science disregards the significant role of physical environments in human thinking, which is embedded in and extended into the world.
世界挑战:认知科学忽视了物理环境在人类思维中的重要作用,而人类思维已经嵌入并延伸到世界中。 - The body challenge: Cognitive science neglects the contribution of embodiment to human thought and action.
身体挑战:认知科学忽视了具身性对人类思想和行动的贡献。 - The dynamical systems challenge: The mind is a dynamical system, not a computational system.
动力系统的挑战:心智是一个动力系统,而不是一个计算系统。 - The social challenge: Human thought is inherently social in ways that cognitive science ignores.
社会挑战:人类思想本质上是社会性的,而认知科学却忽视了这一点。 - The mathematics challenge: Mathematical results show that human thinking cannot be computational in the standard sense, so the brain must operate differently, perhaps as a quantum computer.
数学挑战:数学结果表明,人类的思维不能是标准意义上的计算,因此大脑必须以不同的方式运作,也许就像量子计算机一样。 - The interdisciplinarity challenge: Cognitive science has failed to go beyond multidisciplinary interactions by developing a core theory that unifies work in its many disciplines.
跨学科挑战:认知科学未能通过发展一种核心理论来统一其多个学科的工作,从而超越多学科互动。
The first five challenges are increasingly addressed by advances that explain emotions, consciousness, action, and embodiment in terms of neural mechanisms. The social challenge is being met by the development of computational models of interacting agents. The mathematics challenge is based on misunderstanding of Gödel’s theorem and on exaggeration of the relevance of quantum theory to neural processes. Response to the interdisciplinary challenge must recognize that cognitive science still has many contending theoretical approaches, without the unification that theories of evolution and genetics provide for biology. Nevertheless, interactions among psychology, neuroscience, linguistics, philosophy, anthropology, and computer modeling have contributed to theoretical and empirical progress concerning many aspects of cognition. For example, computational philosophy uses programmed models to address questions in epistemology, ethics, and other areas of philosophy.
前五个挑战越来越多地通过从神经机制的角度解释情绪、意识、行动和体现的进步来解决。通过开发交互代理的计算模型来应对社会挑战。数学挑战赛基于对哥德尔定理的误解以及夸大量子理论与神经过程的相关性。对跨学科挑战的回应必须认识到,认知科学仍然存在许多相互竞争的理论方法,而没有进化论和遗传学理论为生物学提供的统一性。尽管如此,心理学、神经科学、语言学、哲学、人类学和计算机建模之间的相互作用为认知许多方面的理论和实证进步做出了贡献。例如,计算哲学使用编程模型来解决认识论、伦理学和哲学其他领域的问题。
5.3 Philosophy of Cognitive Science 5.3 认知科学哲学
Cognitive science raises many interesting methodological questions that are worthy of investigation by philosophers of science. What is the nature of representation? What role do computational models play in the development of cognitive theories? What is the relation among apparently competing accounts of mind involving symbolic processing, neural networks, and dynamical systems? What is the relation among the various fields of cognitive science such as psychology, linguistics, and neuroscience? Are psychological phenomena subject to reductionist explanations via neuroscience? Are levels of explanation best characterized in terms of ontological levels (molecular, neural, psychological, social) or methodological ones (computational, algorithmic, physical)?
认知科学提出了许多有趣的方法论问题,值得科学哲学家进行研究。代表性的性质是什么?计算模型在认知理论的发展中扮演什么角色?涉及符号处理、神经网络和动态系统的明显竞争的心智账户之间有什么关系?心理学、语言学和神经科学等认知科学的各个领域之间有什么关系?心理现象是否受神经科学的还原论解释所影响?解释层次的最佳描述是本体论层次(分子、神经、心理、社会)还是方法论层次(计算、算法、物理)?
The increasing prominence of neural explanations in cognitive, social, developmental, and clinical psychology raises important philosophical questions about explanation and reduction. Anti-reductionism, according to which psychological explanations are completely independent of neurological ones, is becoming increasingly implausible, but it remains controversial to what extent psychology can be reduced to neuroscience and molecular biology. Crucial to answering questions about the nature of reduction are answers to questions about the nature of explanation. Explanations in psychology, neuroscience, and biology in general are plausibly viewed as descriptions of mechanisms, which are combinations of connected parts that interact to produce regular changes. In psychological explanations, the parts are mental representations that interact by computational procedures to produce new representations. In neuroscientific explanations, the parts are neural populations that interact by electrochemical processes to produce new neural activity that leads to actions. If progress in theoretical neuroscience continues, it should become possible to tie psychological to neurological explanations by showing how mental representations such as concepts are constituted by activities in neural populations, and how computational procedures such as spreading activation among concepts are carried out by neural processes.
神经解释在认知、社会、发展和临床心理学中日益突出,提出了关于解释和还原的重要哲学问题。根据反还原论,心理学解释完全独立于神经学解释,正变得越来越难以置信,但心理学在多大程度上可以简化为神经科学和分子生物学仍然存在争议。回答有关还原性质的问题的关键是回答有关解释性质的问题。心理学、神经科学和生物学中的解释通常被合理地视为对机制的描述,这些机制是相互影响以产生规律变化的连接部分的组合。在心理学解释中,这些部分是心理表征,它们通过计算程序相互作用以产生新的表征。在神经科学的解释中,这些部分是通过电化学过程相互作用以产生新的神经活动,从而导致行动。如果理论神经科学的进步继续下去,应该有可能通过展示诸如概念之类的心理表征如何由神经群体中的活动构成,以及神经过程如何执行计算程序(例如在概念之间传播激活)来将心理学与神经学解释联系起来。
The increasing integration of cognitive psychology with neuroscience provides evidence for the mind-brain identity theory according to which mental processes are neural, representational, and computational. Other philosophers dispute such identification on the grounds that minds are embodied in biological systems and extended into the world. However, moderate claims about embodiment are consistent with the identity theory because brain representations operate in several modalities (e.g. visual and motor) that enable minds to deal with the world. Another materialist alternative to mind-brain identity comes from recognizing that explanations of mind employ molecular and social mechanisms as well as neural and representational ones.
认知心理学与神经科学的日益融合为心脑同一理论提供了证据,根据该理论,心理过程是神经性的、表征性的和计算性的。其他哲学家对这种身份认同提出异议,理由是思想体现在生物系统中并延伸到世界。然而,关于体现的适度主张与同一性理论一致,因为大脑表征以多种方式(例如视觉和运动)运作,使大脑能够处理世界。心脑同一性的另一种唯物主义替代方案来自于认识到对心智的解释采用分子和社会机制以及神经和表征机制。
Bibliography
- Anderson, J. R., 2007. How Can the Mind Occur in the Physical Universe?, Oxford: Oxford University Press.
- –––, 2010. Cognitive Psychology and its Implications, 7th edition, New York: Worth.
- Bechtel, W., 2008. Mental Mechanisms: Philosophical Perspectives on Cognitive Neurosciences, New York: Routledge.
- Bechtel, W., & Graham, G. (eds.), 1998. A Companion to Cognitive Science, Malden, MA: Blackwell.
- Bechtel, W., Mandik, P., Mundale, J., & Stufflebeam, R. S. (eds.), 2001. Philosophy and the Neurosciences: A Reader, Malden, MA: Blackwell.
- Bermúdez, J. L., 2022. Cognitive Science: An Introduction to the Science of the Mind, 4th edition, Cambridge: Cambridge University Press.
- Blouw, P., Solodkin, E., Thagard, P., & Eliasmith, C., 2016. “Concepts as Semantic Pointers: A Framework and Computational Model,” Cognitive Science, 40: 1128–1162.
- Chalmers, D. J., 2022. Reality+: Virtual Worlds and the Problems of Philosophy, New York: Norton.
- Boden, M. A., 2006. Mind as Machine: A History of Cognitive Science , Oxford: Clarendon.
- Chemero, A., 2009. Radical Embodied Cognitive Science, Cambridge, MA: MIT Press.
- Churchland, P. M., 2007. Neurophilosophy at Work, Cambridge: Cambridge University Press.
- Churchland, P. S., 2002. Brain-wise: Studies in Neurophilosophy, Cambridge, MA: MIT Press.
- Clark, A., 2001. Mindware: An Introduction to the Philosophy of Cognitive science, New York: Oxford University Press.
- –––, 2008. Supersizing the Mind: Embodiment, Action, and Cognitive Extension, New York: Oxford University Press.
- –––, 2015. Surfing Uncertainty: Prediction, Action, and the Embodied mind, Oxford: Oxford University Press.
- Craver, C. F., 2007. Explaining the Brain, Oxford: Oxford University Press.
- Dayan, P., & Abbott, L. F., 2001. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, Cambridge, MA: MIT Press.
- Dehaene, S., 2014. Consciousness and the Brain: Deciphering How the Brain Codes Our Thoughts, New York: Viking.
- Doya, K., Ishii, S., Pouget, A., & Rao, A. (eds.), 2007. Bayesian Brain, Cambridge, MA: MIT Press.
- Dreyfus, H. L., 1992. What Computers Still Can’t Do, 3rd edition, Cambridge, MA: MIT Press.
- Eliasmith, C., 2013. How to Build a Brain: A Neural Architecture for Biological Cognition, Oxford: Oxford University Press.
- Eliasmith, C., & Anderson, C. H., 2003. Neural Engineering: Computation, Representation and Dynamics in Neurobiological Systems, Cambridge, MA: MIT Press.
- Forbus, K. D., Ferguson, R. W., Lovett, A., & Gentner, D., 2017. “Extending SME to Handle Larger-Scale Cognitive modeling,”. Cognitive Science, 41(5): 1152–1201.
- Friedenberg, J. D., & Silverman, G., 2021. Cognitive Science: An Introduction to the Study of Mind, 4th edition, Thousand Oaks, CA: Sage.
- Gibbs, R. W., 2005, Embodiment and Cognitive Science, Cambridge: Cambridge University Press.
- Goldman, A., 1993. Philosophical Applications of Cognitive Science, Boulder: Westview Press.
- Goodfellow, I., Bengio, Y., & Courville, A., 2016. Deep Learning, Cambridge, MA: MIT Press.
- Griffiths, T. L., Kemp, C., & Tenenbaum, J. B., 2008. “Bayesian Models of Cognition,” in R. Sun (ed.), The Cambridge Handbook of Computational Psychology, Cambridge: Cambridge University Press, pp. 59–100.
- Hoffman, D., 2019. The Case against Reality: Why Evolution Hid the Truth From our Eyes, New York: WW Norton & Company.
- Hofstadter, D., & Sander, E., 2013. Surfaces and Essences: Analogy as the Fuel and Fire of Thinking, New York: Basic Books.
- Holyoak, K. J., & Morrison, R. G. (eds.), 2012. The Oxford Handbook of Thinking and Reasoning, New York: Oxford University Press.
- Knobe, J., & Nichols, S. (eds.), 2008. Experimental Philosophy, Oxford: Oxford University Press.
- Kallens, P. C., Dale, R., & Christiansen, M. H., 2022. “Quantifying Interdisciplinarity in Cognitive Science and Beyond.” Topics in Cognitive Science, 14(3): 634–645.
- Kosslyn, S. M., Thompson, W. L., & Ganis, G., 2016. The Case for Mental Imagery, New York: Oxford University Press.
- Laird, J. E., LeBiere, C., & Rosenbloom, P. S., 2017. “A Standard Model of the Mind: Toward a Common Computational Framework across Artificial Intelligence, Cognitive Science, Neuroscience, and Robotics,” AI Magazine, 38(4): 13–26.
- Lecun, Y., Bengio, Y., & Hinton, Y., 2015. “Deep Learning,” Nature, 521(7553): 436–444.
- Margolis, E. & Laurence, S. (eds.), 2015. The Conceptual Mind: New Directions in the Study of Concepts, Cambridge, MA: MIT Press.
- McCauley, R. N., 2007. “Reduction: Models of Cross-scientific Relations and their Implications for the Psychology-neuroscience Interface,” in P. Thagard (ed.), Philosophy of Psychology and Cognitive Science, Amsterdam: Elsevier, pp. 105–158.
- Milkowski, M., 2013. Explaining the Computational Mind, Cambridge, MA: MIT Press.
- Murphy, D., 2006. Psychiatry in the Scientific Image, Cambridge, MA: MIT Press.
- Nadel, L. (ed.), 2003. Encyclopedia of Cognitive Science, London:Nature Publishing Group.
- Nisbett, R., 2003. The Geography of Thought: How Asians and Westerners Think Differently … and Why, New York: Free Press.
- Núñez, R., Allen, M., Gao, R., Miller Rigoli, C., Relaford-Doyle, J., & Semenuks, A., 2019. “What Happened to Cognitive Science?” Nature Human Behavior, 3(8): 782–791.
- O’Callaghan, C. A Multisensory Philosophy of Perception. Oxford: Oxford University of Press.
- O’Reilly, R. C., Munakata, Y., Frank, M. J., Hazy, T. E., & Contributors, 2012. Computational Cognitive Neuroscience, Wiki Book, [O’Reilly et al. 2012 available online].
- Parr, T., Pezzulo, G., & Friston, K. J., 2022. Active Inference: The Free Energy Principle in Mind, Brain, and Behaviour, Cambridge, MA: MIT Press.
- Pearl, J., & Mackenzie, D., 2018. The Book of Why: The New Science of Cause and Effect, New York: Basic Books.
- Pessoa, L., 2013. The Cognitive-Emotional Brain: From Interactions to Integration, Cambridge, MA: MIT Press.
- Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D., 2015. “The Logical Primitives of Thought: Empirical Foundations for Compositional Cognitive Models,”. Psychological Review, 123(4), 392–424.
- Polk, T. A., & Seifert, C. M. (eds.), 2002. Cognitive Modeling, Cambridge, MA: MIT Press.
- Quilty-Dunn, J., 2020. “Perceptual pluralism,” Noûs, 54(4): 807–838.
- Rogers, T. T., & McClelland, J. L., 2004. Semantic Cognition: A Parallel Distributed Processing Approach, Cambridge, MA: MIT Press.
- Russell, S., & Norvig, P., 2020. Artificial Intelligence: A Modern Approach, 4th edition, New York: Pearson.
- Seth, A., 2021. Being You: A New Science of Consciousness, New York: Dutton
- Smith, E. E…, & Kosslyn, S. M., 2007. Cognitive Psychology: Mind and Brain, Upper Saddle River, NJ: Pearson Prentice Hall.
- Sun, R. (ed.), 2008. The Cambridge Handbook of Computational Psychology, Cambridge: Cambridge University Press.
- ––– (ed.), 2012. Grounding Social Sciences in Cognitive Sciences, Cambridge, MA: MIT Press.
- Thagard, P., 2005. Mind: Introduction to Cognitive Science, second edition, Cambridge, MA: MIT Press.
- –––, 2009. “Why cognitive science needs philosophy and vice versa, ” Topics in Cognitive Science, 1: 237–254.
- –––, 2010. The Brain and the Meaning of Life, Princeton: Princeton University Press.
- –––, 2012. The Cognitive Science of Science: Explanation, Discovery, and Conceptual Change, Cambridge, MA: MIT Press.
- –––, 2019a. Brain-Mind: From Neurons to Consciousness and Creativity, Oxford: Oxford University Press.
- –––, 2019b. Natural Philosophy: From Social Brains to Knowledge, Reality, Morality, and Beauty, New York: Oxford University Press.
- –––, 2021. Bots and Beasts: What Makes Machines, Animals, and People Smart? Cambridge, MA: MIT Press.
- Thompson, E., 2007. Mind in Life: Biology, Phenomenology, and the Science of Mind, Cambridge, MA: Harvard University Press.
- Varela, F. J., Thompson, E., & Rosch, E., 2016. The Embodied Mind: Cognitive Science and Human Experience, revised edition, Cambridge, MA: MIT Press.
- Wilson, R. A., & Keil, F. C. (eds.), 1999. The MIT Encyclopedia of the Cognitive Sciences, Cambridge, MA: MIT Press.
The Computational Theory of Mind 心智的计算理论
First published Fri Oct 16, 2015; substantive revision Fri Feb 21, 2020
Could a machine think? Could the mind itself be a thinking machine? The computer revolution transformed discussion of these questions, offering our best prospects yet for machines that emulate reasoning, decision-making, problem solving, perception, linguistic comprehension, and other mental processes. Advances in computing raise the prospect that the mind itself is a computational system—a position known as the computational theory of mind (CTM). Computationalists are researchers who endorse CTM, at least as applied to certain important mental processes. CTM played a central role within cognitive science during the 1960s and 1970s. For many years, it enjoyed orthodox status. More recently, it has come under pressure from various rival paradigms. A key task facing computationalists is to explain what one means when one says that the mind “computes”. A second task is to argue that the mind “computes” in the relevant sense. A third task is to elucidate how computational description relates to other common types of description, especially neurophysiological description (which cites neurophysiological properties of the organism’s brain or body) and intentional description (which cites representational properties of mental states).
机器会思考吗?大脑本身会是一台思考机器吗?计算机革命改变了对这些问题的讨论,为模拟推理、决策、解决问题、感知、语言理解和其他心理过程的机器提供了迄今为止最好的前景。计算的进步提出了这样一种前景,即心智本身就是一个计算系统——这一立场被称为心智的计算理论(CTM)。计算论者是支持 CTM 的研究人员,至少在某些重要的心理过程中是这样。CTM 在 1960 年代和 1970 年代在认知科学中发挥了核心作用。多年来,它一直享有正统的地位。最近,它受到了来自各种竞争范式的压力。计算论者面临的一个关键任务是解释当一个人说头脑“计算”时是什么意思。第二个任务是论证心智在相关意义上“计算”。第三个任务是阐明计算描述与其他常见描述类型的关系,特别是神经生理学描述(引用生物体大脑或身体的神经生理特性)和意向性描述(引用精神状态的表征特性)。
1. Turing machines 1. 图灵机
The intuitive notions of computation and algorithm are central to mathematics. Roughly speaking, an algorithm is an explicit, step-by-step procedure for answering some question or solving some problem. An algorithm provides routine mechanical instructions dictating how to proceed at each step. Obeying the instructions requires no special ingenuity or creativity. For example, the familiar grade-school algorithms describe how to compute addition, multiplication, and division. Until the early twentieth century, mathematicians relied upon informal notions of computation and algorithm without attempting anything like a formal analysis. Developments in the foundations of mathematics eventually impelled logicians to pursue a more systematic treatment. Alan Turing’s landmark paper “On Computable Numbers, With an Application to the Entscheidungsproblem” (Turing 1936) offered the analysis that has proved most influential.
计算和算法的直观概念是数学的核心。粗略地说,算法是回答某些问题或解决某些问题的显式分步过程。算法提供常规的机械指令,指示如何进行每个步骤。遵守指示不需要特别的聪明才智或创造力。例如,熟悉的 grade-school 算法描述了如何计算加法、乘法和除法。直到 20 世纪初,数学家们都依赖于计算和算法的非正式概念,而没有尝试过任何类似正式分析的东西。数学基础的发展最终促使逻辑学家寻求更系统的处理方法。艾伦·图灵(Alan Turing)具有里程碑意义的论文“论可计算数字,及其在 Entscheidungsproblem 中的应用”(Turing 1936)提供了被证明最具影响力的分析。
A Turing machine is an abstract model of an idealized computing device with unlimited time and storage space at its disposal. The device manipulates symbols, much as a human computing agent manipulates pencil marks on paper during arithmetical computation. Turing says very little about the nature of symbols. He assumes that primitive symbols are drawn from a finite alphabet. He also assumes that symbols can be inscribed or erased at “memory locations”. Turing’s model works as follows:
图灵机是理想化计算设备的抽象模型,具有无限的时间和存储空间可供其使用。该设备操纵符号,就像人类计算代理在算术计算过程中操纵纸上的铅笔标记一样。图灵对符号的本质几乎没有说什么。他假设原始符号是从有限的字母表中绘制的。他还假设符号可以在“内存位置”被铭刻或擦除。图灵模型的工作原理如下:
- There are infinitely many memory locations, arrayed in a linear structure. Metaphorically, these memory locations are “cells” on an infinitely long “paper tape”. More literally, the memory locations might be physically realized in various media (e.g., silicon chips).
有无限多的内存位置,以线性结构排列。打个比方,这些记忆位置是无限长的“纸带”上的“细胞”。更确切地说,内存位置可以在各种介质(例如硅芯片)中物理实现。 - There is a central processor, which can access one memory location at a time. Metaphorically, the central processor is a “scanner” that moves along the paper tape one “cell” at a time.
有一个中央处理器,一次可以访问一个内存位置。打个比方,中央处理器是一个“扫描仪”,它一次沿着纸带移动一个“单元”。 - The central processor can enter into finitely many machine states.
中央处理器可以进入有限数量的机器状态。 - The central processor can perform four elementary operations: write a symbol at a memory location; erase a symbol from a memory location; access the next memory location in the linear array (“move to the right on the tape”); access the previous memory location in the linear array (“move to the left on the tape”).
中央处理器可以执行四个基本操作:在内存位置写入符号;从内存位置擦除元件;访问线性数组中的下一个内存位置(“移动到磁带的右侧”);访问线性数组中的上一个内存位置(“Move to the Left on the Tape”)。 - Which elementary operation the central processor performs depends entirely upon two facts: which symbol is currently inscribed at the present memory location; and the scanner’s own current machine state.
中央处理器执行哪种基本操作完全取决于两个事实:当前内存位置刻有哪个符号;以及扫描程序自己的当前计算机状态。 - A machine table dictates which elementary operation the central processor performs, given its current machine state and the symbol it is currently accessing. The machine table also dictates how the central processor’s machine state changes given those same factors. Thus, the machine table enshrines a finite set of routine mechanical instructions governing computation.
机器表决定了中央处理器在给定其当前机器状态和当前正在访问的符号的情况下执行哪种基本操作。machine 表还指示在给定这些相同因素的情况下,中央处理器的 machine 状态如何变化。因此,机器表包含一组有限的常规机械指令来管理计算。
Turing translates this informal description into a rigorous mathematical model(For more details, see the entry on Turing machines.).Turing motivates his approach by reflecting on idealized human computing agents. Citing finitary limits on our perceptual and cognitive apparatus, he argues that any symbolic algorithm executed by a human can be replicated by a suitable Turing machine. He concludes that the Turing machine formalism, despite its extreme simplicity, is powerful enough to capture all humanly executable mechanical procedures over symbolic configurations. Subsequent discussants have almost universally agreed.
图灵将这种非正式的描述转化为一个严格的数学模型。图灵通过反思理想化的人类计算代理来激励他的方法。他引用了我们的感知和认知设备的有限限制,认为人类执行的任何符号算法都可以由合适的图灵机复制。他得出的结论是,图灵机形式主义尽管极其简单,但其强大程度足以捕获所有人类可执行的机械程序,而不是符号配置。随后的讨论者几乎一致同意。
Turing computation is often described as digital rather than analog. What this means is not always so clear, but the basic idea is usually that computation operates over discrete configurations. By comparison, many historically important algorithms operate over continuously variable configurations. For example, Euclidean geometry assigns a large role to ruler-and-compass constructions, which manipulate geometric shapes. For any shape, one can find another that differs to an arbitrarily small extent. Symbolic configurations manipulated by a Turing machine do not differ to arbitrarily small extent. Turing machines operate over discrete strings of elements (digits) drawn from a finite alphabet. One recurring controversy concerns whether the digital paradigm is well-suited to model mental activity or whether an analog paradigm would instead be more fitting (MacLennan 2012; Piccinini and Bahar 2013).
图灵计算通常被描述为数字计算而不是模拟计算。这意味着什么并不总是那么清楚,但基本思想通常是计算在离散配置上运行。相比之下,许多历史上重要的算法在连续可变配置上运行。例如,欧几里得几何为控制几何形状的标尺和罗盘结构分配了很大的作用。对于任何形状,都可以找到另一个差异程度任意小的形状。由 Turing machine 操作的符号配置不会在任意小的范围内产生差异。图灵机对从有限字母表中绘制的离散元素字符串(数字)进行操作。一个反复出现的争议是关于数字范式是否适合建模心理活动,或者模拟范式是否更合适(MacLennan 2012;Piccinini 和 Bahar 2013)。
Besides introducing Turing machines, Turing (1936) proved several seminal mathematical results involving them. In particular, he proved the existence of a universal Turing machine (UTM). Roughly speaking, a UTM is a Turing machine that can mimic any other Turing machine. One provides the UTM with a symbolic input that codes the machine table for Turing machine M. The UTM replicates M’s behavior, executing instructions enshrined by M’s machine table. In that sense, the UTM is a programmable general purpose computer. To a first approximation, all personal computers are also general purpose: they can mimic any Turing machine, when suitably programmed. The main caveat is that physical computers have finite memory, whereas a Turing machine has unlimited memory. More accurately, then, a personal computer can mimic any Turing machine until it exhausts its limited memory supply.
除了引入图灵机外,图灵(1936)还证明了涉及它们的几个开创性的数学结果。特别是,他证明了通用图灵机(UTM)的存在。粗略地说,UTM 是可以模仿任何其他图灵机的图灵机。一个为 UTM 提供一个符号输入,用于对图灵机 M 的机器表进行编码。UTM 复制 M 的行为,执行 M 的机器表所奉行的指令。从这个意义上说,UTM 是一台可编程的通用计算机。首先,所有个人计算机也是通用的:如果编程得当,它们可以模仿任何图灵机。主要警告是物理计算机的内存有限,而图灵机的内存是无限的。更准确地说,个人计算机可以模仿任何图灵机,直到它耗尽其有限的内存供应。
Turing’s discussion helped lay the foundations for computer science, which seeks to design, build, and understand computing systems. As we know, computer scientists can now build extremely sophisticated computing machines. All these machines implement something resembling Turing computation, although the details differ from Turing’s simplified model.
图灵的讨论为计算机科学奠定了基础,计算机科学旨在设计、构建和理解计算系统。正如我们所知,计算机科学家现在可以构建极其复杂的计算机。所有这些机器都实现了类似于图灵计算的东西,尽管细节与图灵的简化模型不同。
2. Artificial intelligence 2. 人工智能
Rapid progress in computer science prompted many, including Turing, to contemplate whether we could build a computer capable of thought. Artificial Intelligence (AI) aims to construct “thinking machinery”. More precisely, it aims to construct computing machines that execute core mental tasks such as reasoning, decision-making, problem solving, and so on. During the 1950s and 1960s, this goal came to seem increasingly realistic (Haugeland 1985).
计算机科学的快速发展促使包括图灵在内的许多人思考我们是否可以构建一台能够思考的计算机。人工智能(AI)旨在构建“思考机器”。更准确地说,它旨在构建执行核心脑力任务(如推理、决策、解决问题等)的计算机。在 1950 年代和 1960 年代,这个目标似乎越来越现实(Haugeland 1985)。
Early AI research emphasized logic. Researchers sought to “mechanize” deductive reasoning. A famous example was the Logic Theorist computer program (Newell and Simon 1956), which proved 38 of the first 52 theorems from Principia Mathematica (Whitehead and Russell 1925). In one case, it discovered a simpler proof than Principia’s.
早期的 AI 研究强调逻辑。研究人员试图将演绎推理“机械化”。一个著名的例子是逻辑理论家计算机程序(Newell 和 Simon 1956),它证明了 Principia Mathematica 的前 52 个定理中的 38 个(Whitehead 和 Russell 1925)。在一个案例中,它发现了一个比 Principia 的更简单的证明。
Early success of this kind stimulated enormous interest inside and outside the academy. Many researchers predicted that intelligent machines were only a few years away. Obviously, these predictions have not been fulfilled. Intelligent robots do not yet walk among us. Even relatively low-level mental processes such as perception vastly exceed the capacities of current computer programs. When confident predictions of thinking machines proved too optimistic, many observers lost interest or concluded that AI was a fool’s errand. Nevertheless, the decades have witnessed gradual progress. One striking success was IBM’s Deep Blue, which defeated chess champion Gary Kasparov in 1997. Another major success was the driverless car Stanley (Thrun, Montemerlo, Dahlkamp, et al. 2006), which completed a 132-mile course in the Mojave Desert, winning the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. A less flashy success story is the vast improvement in speech recognition algorithms.
这种早期的成功激发了学术界内外的巨大兴趣。许多研究人员预测,智能机器只不过是几年后的事情了。显然,这些预测并没有实现。智能机器人还没有走在我们中间。即使是相对低级的心理过程,如感知,也大大超过了当前计算机程序的能力。当对会思考的机器的自信预测被证明过于乐观时,许多观察者就失去了兴趣,或者得出结论说 AI 是一件愚蠢的事情。尽管如此,几十年来见证了逐渐的进步。IBM 的 Deep Blue 取得了惊人的成功,它在 1997 年击败了国际象棋冠军加里·卡斯帕罗夫。另一个重大成功是无人驾驶汽车 Stanley(Thrun、Montemerlo、Dahlkamp 等人,2006 年),它在莫哈韦沙漠完成了 132 英里的路线,赢得了 2005 年国防高级研究计划局(DARPA)大挑战赛。一个不那么华丽的成功故事是语音识别算法的巨大改进。
One problem that dogged early work in AI is uncertainty. Nearly all reasoning and decision-making operates under conditions of uncertainty. For example, you may need to decide whether to go on a picnic while being uncertain whether it will rain. Bayesian decision theory is the standard mathematical model of inference and decision-making under uncertainty. Uncertainty is codified through probability. Precise rules dictate how to update probabilities in light of new evidence and how to select actions in light of probabilities and utilities. (See the entries Bayes’s theorem and normative theories of rational choice: expected utility for details.) In the 1980s and 1990s, technological and conceptual developments enabled efficient computer programs that implement or approximate Bayesian inference in realistic scenarios. An explosion of Bayesian AI ensued (Thrun, Burgard, and Fox 2006), including the aforementioned advances in speech recognition and driverless vehicles. Tractable algorithms that handle uncertainty are a major achievement of contemporary AI (Murphy 2012), and possibly a harbinger of more impressive future progress.
AI 早期工作的一个问题是不确定性。几乎所有的推理和决策都是在不确定的条件下进行的。例如,您可能需要决定是否去野餐,但不确定是否会下雨。贝叶斯决策理论是在不确定性下进行推理和决策的标准数学模型。不确定性通过概率被编纂成法典。精确的规则规定了如何根据新证据更新概率,以及如何根据概率和效用选择行动。(有关详细信息,请参阅条目 Bayes’s theorem 和 normative theories of rational choice: expected utility。在 1980 年代和 1990 年代,技术和概念的发展使高效的计算机程序成为可能,这些程序可以在现实场景中实现或近似贝叶斯推理。贝叶斯人工智能的爆炸式增长随之而来(Thrun、Burgard 和 Fox 2006),包括上述语音识别和无人驾驶汽车的进步。处理不确定性的可处理算法是当代人工智能的一项重大成就(Murphy 2012),并且可能预示着未来更令人印象深刻的进步。
Some philosophers insist that computers, no matter how sophisticated they become, will at best mimic rather than replicate thought. A computer simulation of the weather does not really rain. A computer simulation of flight does not really fly. Even if a computing system could simulate mental activity, why suspect that it would constitute the genuine article?
一些哲学家坚持认为,计算机,无论它们变得多么复杂,充其量只是模仿而不是复制思想。对天气的计算机模拟并不是真的下雨。飞行的计算机模拟并不能真正飞行。即使一个计算系统可以模拟心理活动,为什么还要怀疑它会构成真正的文章呢?
Turing (1950) anticipated these worries and tried to defuse them. He proposed a scenario, now called the Turing Test, where one evaluates whether an unseen interlocutor is a computer or a human. A computer passes the Turing test if one cannot determine that it is a computer. Turing proposed that we abandon the question “Could a computer think?” as hopelessly vague, replacing it with the question “Could a computer pass the Turing test?”. Turing’s discussion has received considerable attention, proving especially influential within AI. Ned Block (1981) offers an influential critique. He argues that certain possible machines pass the Turing test even though these machines do not come close to genuine thought or intelligence. See the entry the Turing test for discussion of Block’s objection and other issues surrounding the Turing Test.For more on AI, see the entry logic and artificial intelligence. For much more detail, see Russell and Norvig (2010).
Turing(1950)预见到了这些担忧并试图消除它们。他提出了一个现在称为图灵测试的场景,在这个场景中,人们评估一个看不见的对话者是计算机还是人类。如果无法确定计算机是计算机,则计算机通过图灵测试。图灵建议我们放弃“计算机能思考吗”这个问题,因为它无可救药地模糊,取而代之的是“计算机能通过图灵测试吗?图灵的讨论受到了相当大的关注,事实证明在 AI 领域尤其有影响力。内德·布洛克(1981)提出了一个有影响力的批评。他认为,某些可能的机器通过了图灵测试,即使这些机器并不接近真正的思想或智能。
3. The classical computational theory of mind 3. 经典的心智计算理论
Warren McCulloch and Walter Pitts (1943) first suggested that something resembling the Turing machine might provide a good model for the mind. In the 1960s, Turing computation became central to the emerging interdisciplinary initiative cognitive science, which studies the mind by drawing upon psychology, computer science (especially AI), linguistics, philosophy, economics (especially game theory and behavioral economics), anthropology, and neuroscience. The label classical computational theory of mind (which we will abbreviate as CCTM) is now fairly standard. According to CCTM, the mind is a computational system similar in important respects to a Turing machine, and core mental processes (e.g., reasoning, decision-making, and problem solving) are computations similar in important respects to computations executed by a Turing machine. These formulations are imprecise. CCTM is best seen as a family of views, rather than a single well-defined view.[1]
Warren McCulloch 和 Walter Pitts(1943)首先提出,类似于图灵机的东西可能为大脑提供一个很好的模型。在 1960 年代,图灵计算成为新兴的跨学科计划认知科学的核心,该计划通过借鉴心理学、计算机科学(尤其是人工智能)、语言学、哲学、经济学(尤其是博弈论和行为经济学)、人类学和神经科学来研究心灵。经典计算心智理论(我们将其缩写为 CCTM)这个标签现在是相当标准的。根据 CCTM,心智是一个在重要方面类似于图灵机的计算系统,而核心心理过程(例如,推理、决策和解决问题)是在重要方面类似于图灵机执行的计算。这些表述是不精确的。CCTM 最好被视为一系列视图,而不是单个定义明确的视图。[1]
It is common to describe CCTM as embodying “the computer metaphor”. This description is doubly misleading.
通常将 CCTM 描述为体现“计算机隐喻”。这种描述具有双重误导性。
First, CCTM is better formulated by describing the mind as a “computing system” or a “computational system” rather than a “computer”. As David Chalmers (2011) notes, describing a system as a “computer” strongly suggests that the system is programmable. As Chalmers also notes, one need not claim that the mind is programmable simply because one regards it as a Turing-style computational system. (Most Turing machines are not programmable.) Thus, the phrase “computer metaphor” strongly suggests theoretical commitments that are inessential to CCTM. The point here is not just terminological. Critics of CCTM often object that the mind is not a programmable general purpose computer (Churchland, Koch, and Sejnowski 1990). Since classical computationalists need not claim (and usually do not claim) that the mind is a programmable general purpose computer, the objection is misdirected.
首先,通过将心智描述为“计算系统”或“计算系统”而不是“计算机”,可以更好地表述 CCTM。正如 David Chalmers(2011)所指出的,将系统描述为“计算机”强烈表明该系统是可编程的。正如 Chalmers 还指出的那样,人们不必仅仅因为将 Mind 视为图灵式的计算系统就声称它是可编程的。(大多数图灵机是不可编程的。因此,“计算机隐喻”一词强烈暗示了对 CCTM 来说无关紧要的理论承诺。这里的重点不仅仅是术语。CCTM 的批评者经常反对说,大脑不是一台可编程的通用计算机(Churchland, Koch, and Sejnowski 1990)。由于经典计算论者不需要声称(通常也不声称)大脑是一台可编程的通用计算机,因此反对意见是错误的。
Second, CCTM is not intended metaphorically. CCTM does not simply hold that the mind is like a computing system. CCTM holds that the mind literally is a computing system. Of course, the most familiar artificial computing systems are made from silicon chips or similar materials, whereas the human body is made from flesh and blood. But CCTM holds that this difference disguises a more fundamental similarity, which we can capture through a Turing-style computational model. In offering such a model, we prescind from physical details. We attain an abstract computational description that could be physically implemented in diverse ways (e.g., through silicon chips, or neurons, or pulleys and levers). CCTM holds that a suitable abstract computational model offers a literally true description of core mental processes.
其次,CCTM 不是有意隐喻的。CCTM 并不简单地认为心智就像一个计算系统。CCTM 认为,心灵实际上是一个计算系统。当然,最熟悉的人工计算系统是由硅芯片或类似材料制成的,而人体是由血肉制成的。但 CCTM 认为,这种差异掩盖了更基本的相似性,我们可以通过图灵式计算模型来捕捉这一点。在提供这样一个模型时,我们从物理细节出发。我们获得了一个抽象的计算描述,该描述可以通过多种方式(例如,通过硅芯片、神经元、滑轮和杠杆)实现。CCTM 认为,一个合适的抽象计算模型提供了对核心心理过程的字面真实描述。
It is common to summarize CCTM through the slogan “the mind is a Turing machine”. This slogan is also somewhat misleading, because no one regards Turing’s precise formalism as a plausible model of mental activity. The formalism seems too restrictive in several ways:
通常用“心灵是图灵机”的口号来总结 CCTM。这个口号也有些误导,因为没有人把图灵的精确形式主义看作是心理活动的合理模型。形式主义在几个方面似乎过于严格:
- Turing machines execute pure symbolic computation. The inputs and outputs are symbols inscribed in memory locations. In contrast, the mind receives sensory input (e.g., retinal stimulations) and produces motor output (e.g., muscle activations). A complete theory must describe how mental computation interfaces with sensory inputs and motor outputs.
图灵机执行纯符号计算。输入和输出是刻在内存位置的符号。相比之下,大脑接收感觉输入(例如,视网膜刺激)并产生运动输出(例如,肌肉激活)。一个完整的理论必须描述心算如何与感觉输入和运动输出相连接。 - A Turing machine has infinite discrete memory capacity. Ordinary biological systems have finite memory capacity. A plausible psychological model must replace the infinite memory store with a large but finite memory store
图灵机具有无限的离散内存容量。普通生物系统的记忆容量是有限的。一个合理的心理学模型必须用一个大但有限的内存存储来取代无限内存存储 - Modern computers have random access memory: addressable memory locations that the central processor can directly access. Turing machine memory is not addressable. The central processor can access a location only by sequentially accessing intermediate locations. Computation without addressable memory is hopelessly inefficient. For that reason, C.R. Gallistel and Adam King (2009) argue that addressable memory gives a better model of the mind than non-addressable memory.
现代计算机具有随机存取存储器:中央处理器可以直接访问的可寻址内存位置。图灵机内存不可寻址。中央处理器只能通过顺序访问中间位置来访问位置。没有可寻址内存的计算效率低得无可救药。出于这个原因,C.R. Gallistel 和 Adam King(2009)认为,可寻址记忆比不可寻址记忆提供了更好的心智模型。 - A Turing machine has a central processor that operates serially, executing one instruction at a time. Other computational formalisms relax this assumption, allowing multiple processing units that operate in parallel. Classical computationalists can allow parallel computations (Fodor and Pylyshyn 1988; Gallistel and King 2009: 174). See Gandy (1980) and Sieg (2009) for general mathematical treatments that encompass both serial and parallel computation.
图灵机有一个串行运行的中央处理器,一次执行一条指令。其他计算形式放宽了这一假设,允许多个处理单元并行运行。经典计算主义者可以允许并行计算(Fodor 和 Pylyshyn 1988;Gallistel 和 King 2009:174)。请参阅 Gandy(1980)和 Sieg(2009)了解包含串行和并行计算的一般数学处理。 - Turing computation is deterministic: total computational state determines subsequent computational state. One might instead allow stochastic computations. In a stochastic model, current state does not dictate a unique next state. Rather, there is a certain probability that the machine will transition from one state to another.
图灵计算是确定性的:总计算状态决定了后续的计算状态。相反,人们可能允许随机计算。在随机模型中,当前状态并不决定唯一的下一个状态。相反,机器有一定的可能性从一种状态过渡到另一种状态。
CCTM claims that mental activity is “Turing-style computation”, allowing these and other departures from Turing’s own formalism.
CCTM 声称心理活动是“图灵式计算”,允许这些和其他偏离图灵自己的形式主义。
3.1 Machine functionalism 3.1 机器功能主义
Hilary Putnam (1967) introduced CCTM into philosophy. He contrasted his position with logical behaviorism and type-identity theory. Each position purports to reveal the nature of mental states, including propositional attitudes (e.g., beliefs), sensations (e.g., pains), and emotions (e.g., fear). According to logical behaviorism, mental states are behavioral dispositions. According to type-identity theory, mental states are brain states. Putnam advances an opposing functionalist view, on which mental states are functional states. According to functionalism, a system has a mind when the system has a suitable functional organization. Mental states are states that play appropriate roles in the system’s functional organization. Each mental state is individuated by its interactions with sensory input, motor output, and other mental states.
Hilary Putnam(1967)将 CCTM 引入哲学。他将自己的立场与逻辑行为主义和类型同一理论进行了对比。每个姿势都旨在揭示心理状态的本质,包括命题态度(例如,信念)、感觉(例如,痛苦)和情绪(例如,恐惧)。根据逻辑行为主义,心理状态是行为倾向。根据类型同一性理论,心理状态是大脑状态。普特南提出了一种相反的功能主义观点,即心理状态是功能状态。根据功能主义,当系统具有合适的功能组织时,系统就有思想。心理状态是在系统的功能组织中扮演适当角色的状态。每种心理状态都由其与感觉输入、运动输出和其他心理状态的相互作用而个性化。
Functionalism offers notable advantages over logical behaviorism and type-identity theory:
功能主义比逻辑行为主义和类型同一理论具有明显的优势:
- Behaviorists want to associate each mental state with a characteristic pattern of behavior—a hopeless task, because individual mental states do not usually have characteristic behavioral effects. Behavior almost always results from distinct mental states operating together (e.g., a belief and a desire). Functionalism avoids this difficulty by individuating mental states through characteristic relations not only to sensory input and behavior but also to one another.
行为主义者希望将每种心理状态与一种特征性的行为模式联系起来——这是一项无望的任务,因为个体心理状态通常不会产生特征性的行为影响。行为几乎总是由不同的心理状态共同运作(例如,信念和欲望)共同作用的结果。功能主义通过不仅与感官输入和行为以及彼此之间的特征关系来个体化心理状态,从而避免了这种困难。 - Type-identity theorists want to associate each mental state with a characteristic physical or neurophysiological state. Putnam casts this project into doubt by arguing that mental states are multiply realizable: the same mental state can be realized by diverse physical systems, including not only terrestrial creatures but also hypothetical creatures (e.g., a silicon-based Martian). Functionalism is tailor-made to accommodate multiple realizability. According to functionalism, what matters for mentality is a pattern of organization, which could be physically realized in many different ways. See the entry multiple realizability for further discussion of this argument.
类型同一性理论家希望将每种心理状态与特征性的物理或神经生理状态联系起来。普特南认为心理状态是可多重实现的,从而对这个项目提出了质疑:相同的心理状态可以通过不同的物理系统来实现,不仅包括地球生物,还包括假设的生物(例如,硅基火星人)。功能主义是为适应多种可实现性而量身定制的。根据功能主义,对心态来说重要的是一种组织模式,它可以通过许多不同的方式在物理上实现。有关此论点的进一步讨论,请参阅条目 multiple realizability。
Putnam defends a brand of functionalism now called machine functionalism. He emphasizes probabilistic automata, which are similar to Turing machines except that transitions between computational states are stochastic. He proposes that mental activity implements a probabilistic automaton and that particular mental states are machine states of the automaton’s central processor. The machine table specifies an appropriate functional organization, and it also specifies the role that individual mental states play within that functional organization. In this way, Putnam combines functionalism with CCTM.
普特南为一种现在被称为机器功能主义的功能主义辩护。他强调概率自动机,它与图灵机类似,只是计算状态之间的转换是随机的。他提出心理活动实现了概率自动机,而特定的心理状态是自动机中央处理器的机器状态。machine 表指定了适当的功能组织,还指定了个人心理状态在该功能组织中所扮演的角色。通过这种方式,普特南将功能主义与 CCTM 相结合。
Machine functionalism faces several problems. One problem, highlighted by Ned Block and Jerry Fodor (1972), concerns the productivity of thought. A normal human can entertain a potential infinity of propositions. Machine functionalism identifies mental states with machine states of a probabilistic automaton. Since there are only finitely many machine states, there are not enough machine states to pair one-one with possible mental states of a normal human. Of course, an actual human will only ever entertain finitely many propositions. However, Block and Fodor contend that this limitation reflects limits on lifespan and memory, rather than (say) some psychological law that restricts the class of humanly entertainable propositions. A probabilistic automaton is endowed with unlimited time and memory capacity yet even still has only finitely many machine states. Apparently, then, machine functionalism mislocates the finitary limits upon human cognition.
机器功能主义面临几个问题。Ned Block 和 Jerry Fodor(1972)强调了一个问题,涉及思想的生产力。一个普通人可以接受潜在的无限命题。机器功能主义将心理状态与概率自动机的机器状态相识别。由于机器状态的数量有限,因此没有足够的机器状态与正常人类可能的心理状态进行一对一配对。当然,一个真实的人只会接受有限的许多命题。然而,Block 和 Fodor 认为,这种限制反映了对寿命和记忆的限制,而不是(比如)某种限制人类可娱乐命题类别的心理定律。概率自动机被赋予了无限的时间和内存容量,但即使仍然只有有限数量的机器状态。因此,显然,机器功能主义错误地定位了人类认知的有限极限。
Another problem for machine functionalism, also highlighted by Block and Fodor (1972), concerns the systematicity of thought. An ability to entertain one proposition is correlated with an ability to think other propositions. For example, someone who can entertain the thought that John loves Mary can also entertain the thought that Mary loves John. Thus, there seem to be systematic relations between mental states. A good theory should reflect those systematic relations. Yet machine functionalism identifies mental states with unstructured machines states, which lack the requisite systematic relations to another. For that reason, machine functionalism does not explain systematicity. In response to this objection, machine functionalists might deny that they are obligated to explain systematicity. Nevertheless, the objection suggests that machine functionalism neglects essential features of human mentality. A better theory would explain those features in a principled way.
机器功能主义的另一个问题,也被 Block 和 Fodor(1972)强调,涉及思想的系统性。接受一个命题的能力与思考其他命题的能力相关。例如,一个能接受约翰爱马利亚的想法的人,也可以接受马利亚爱约翰的想法。因此,心理状态之间似乎存在系统性的关系。一个好的理论应该反映这些系统性的关系。然而,机器功能主义将心理状态与非结构化的机器状态相提并论,而机器状态缺乏与另一个国家必要的系统关系。出于这个原因,机器功能主义并不能解释系统性。作为对这种反对意见的回应,机器功能论者可能会否认他们有义务解释系统性。然而,反对意见表明机器功能主义忽视了人类心态的基本特征。更好的理论会以原则性的方式解释这些特征。
While the productivity and systematicity objections to machine functionalism are perhaps not decisive, they provide strong impetus to pursue an improved version of CCTM. See Block (1978) for additional problems facing machine functionalism and functionalism more generally.
虽然对机器功能主义的生产力和系统性反对可能不是决定性的,但它们为追求 CCTM 的改进版本提供了强大的动力。参见 Block(1978)了解机器功能主义和更普遍的功能主义面临的其他问题。
3.2 The representational theory of mind 3.2 心智的表征理论
Fodor (1975, 1981, 1987, 1990, 1994, 2008) advocates a version of CCTM that accommodates systematicity and productivity much more satisfactorily. He shifts attention to the symbols manipulated during Turing-style computation.
Fodor(1975, 1981, 1987, 1990, 1994, 2008)提倡一种更令人满意地容纳系统性和生产力的 CCTM 版本。他将注意力转移到图灵式计算过程中操纵的符号上。
An old view, stretching back at least to William of Ockham’s Summa Logicae, holds that thinking occurs in a language of thought (sometimes called Mentalese). Fodor revives this view. He postulates a system of mental representations, including both primitive representations and complex representations formed from primitive representations. For example, the primitive Mentalese words JOHN, MARY, and LOVES can combine to form the Mentalese sentence JOHN LOVES MARY. Mentalese is compositional: the meaning of a complex Mentalese expression is a function of the meanings of its parts and the way those parts are combined. Propositional attitudes are relations to Mentalese symbols. Fodor calls this view the representational theory of mind (RTM). Combining RTM with CCTM, he argues that mental activity involves Turing-style computation over the language of thought. Mental computation stores Mentalese symbols in memory locations, manipulating those symbols in accord with mechanical rules.
一种古老的观点,至少可以追溯到奥卡姆的威廉(William of Ockham)的《逻辑大全》(Summa Logicae),认为思考发生在一种思想语言(有时称为 Mentalese)中。福多尔恢复了这一观点。他假设了一个心理表征系统,包括原始表征和由原始表征形成的复杂表征。例如,原始的 Mentalese 单词 JOHN、MARY 和 LOVES 可以组合成 Mentalese 句子 JOHN LOVES MARY。Mentalese 是组合性的:复杂的 Mentalese 表达的含义是其各部分的含义以及这些部分的组合方式的函数。命题态度是与 Mentalese 符号的关系。Fodor 将这种观点称为心智表征理论(RTM)。将 RTM 与 CCTM 相结合,他认为心理活动涉及对思维语言的图灵式计算。心算将 Mentalese 符号存储在内存位置,根据机械规则操纵这些符号。
A prime virtue of RTM is how readily it accommodates productivity and systematicity:
RTM 的一个主要优点是它很容易适应生产力和系统性:
Productivity: RTM postulates a finite set of primitive Mentalese expressions, combinable into a potential infinity of complex Mentalese expressions. A thinker with access to primitive Mentalese vocabulary and Mentalese compounding devices has the potential to entertain an infinity of Mentalese expressions. She therefore has the potential to instantiate infinitely many propositional attitudes (neglecting limits on time and memory).
生产力:RTM 假设一组有限的原始 Mentalese 表达式,可组合成复杂 Mentalese 表达式的潜在无穷大。一个能够使用原始 Mentalese 词汇和 Mentalese 复合设备的思想家有可能接受无穷无尽的 Mentalese 表达。因此,她有可能实例化无限多的命题态度(忽略时间和记忆的限制)。
Systematicity: According to RTM, there are systematic relations between which propositional attitudes a thinker can entertain. For example, suppose I can think that John loves Mary. According to RTM, my doing so involves my standing in some relation R to a Mentalese sentence JOHN LOVES MARY, composed of Mentalese words JOHN, LOVES, and MARY combined in the right way. If I have this capacity, then I also have the capacity to stand in relation R to the distinct Mentalese sentence MARY LOVES JOHN, thereby thinking that Mary loves John. So the capacity to think that John loves Mary is systematically related to the capacity to think that Mary loves John.
系统性:根据 RTM 的说法,思想家可以接受的命题态度之间存在系统关系。例如,假设我可以认为约翰爱马利亚。根据 RTM 的说法,我这样做涉及我在某种关系 R 中的地位 孟塔莱斯句子 JOHN LOVES MARY,该句子由孟塔莱斯词 JOHN、LOVES 和 MARY 以正确的方式组合而成。如果我有这种能力,那么我也有能力将 R 与独特的 Mentalese 句子 MARY LOVES JOHN 联系起来,从而认为 Mary 爱 John。因此,认为约翰爱马利亚的能力,与认为马利亚爱约翰的能力是系统地相关的。
By treating propositional attitudes as relations to complex mental symbols, RTM explains both productivity and systematicity.
通过将命题态度视为与复杂心理符号的关系,RTM 解释了生产力和系统性。
CCTM+RTM differs from machine functionalism in several other respects. First, machine functionalism is a theory of mental states in general, while RTM is only a theory of propositional attitudes. Second, proponents of CCTM+RTM need not say that propositional attitudes are individuated functionally. As Fodor (2000: 105, fn. 4) notes, we must distinguish computationalism (mental processes are computational) from functionalism (mental states are functional states). Machine functionalism endorses both doctrines. CCTM+RTM endorses only the first. Unfortunately, many philosophers still mistakenly assume that computationalism entails a functionalist approach to propositional attitudes (see Piccinini 2004 for discussion).
CCTM+RTM 在其他几个方面与机器功能主义不同。首先,机器功能主义是一种一般的心理状态理论,而 RTM 只是一种命题态度理论。其次,CCTM+RTM 的支持者不需要说命题态度在功能上是个体化的。正如 Fodor(2000: 105, fn. 4)所指出的,我们必须区分计算主义(心理过程是计算的)和功能主义(心理状态是功能状态)。机器功能主义支持这两种学说。CCTM+RTM 只支持第一个。不幸的是,许多哲学家仍然错误地认为计算主义需要一种功能主义的命题态度方法(参见 Piccinini 2004 的讨论)。
Philosophical discussion of RTM tends to focus mainly on high-level human thought, especially belief and desire. However, CCTM+RTM is applicable to a much wider range of mental states and processes. Many cognitive scientists apply it to non-human animals. For example, Gallistel and King (2009) apply it to certain invertebrate phenomena (e.g., honeybee navigation). Even confining attention to humans, one can apply CCTM+RTM to subpersonal processing. Fodor (1983) argues that perception involves a subpersonal “module” that converts retinal input into Mentalese symbols and then performs computations over those symbols. Thus, talk about a language of thought is potentially misleading, since it suggests a non-existent restriction to higher-level mental activity.
关于 RTM 的哲学讨论往往主要集中在高级人类思想上,尤其是信仰和欲望。然而,CCTM+RTM 适用于更广泛的心理状态和过程。许多认知科学家将其应用于非人类动物。例如,Gallistel 和 King(2009)将其应用于某些无脊椎动物现象(例如,蜜蜂导航)。即使将注意力局限于人类,也可以将 CCTM+RTM 应用于亚个人处理。Fodor(1983)认为,感知涉及一个亚人格“模块”,该模块将视网膜输入转换为 Mentalese 符号,然后对这些符号进行计算。因此,谈论一种思想语言可能会产生误导,因为它暗示对更高层次的心理活动不存在限制。
Also potentially misleading is the description of Mentalese as a language, which suggests that all Mentalese symbols resemble expressions in a natural language. Many philosophers, including Fodor, sometimes seem to endorse that position. However, there are possible non-propositional formats for Mentalese symbols. Proponents of CCTM+RTM can adopt a pluralistic line, allowing mental computation to operate over items akin to images, maps, diagrams, or other non-propositional representations (Johnson-Laird 2004: 187; McDermott 2001: 69; Pinker 2005: 7; Sloman 1978: 144–176). The pluralistic line seems especially plausible as applied to subpersonal processes (such as perception) and non-human animals. Michael Rescorla (2009a,b) surveys research on cognitive maps (Tolman 1948; O’Keefe and Nadel 1978; Gallistel 1990), suggesting that some animals may navigate by computing over mental representations more similar to maps than sentences. Elisabeth Camp (2009), citing research on baboon social interaction (Cheney and Seyfarth 2007), argues that baboons may encode social dominance relations through non-sentential tree-structured representations.
将 Mentalese 描述为一种语言也具有潜在的误导性,这表明所有 Mentalese 符号都类似于自然语言中的表达。许多哲学家,包括福多尔,有时似乎都赞同这一立场。但是,Mentalese 符号可能存在非命题格式。CCTM+RTM 的支持者可以采用多元路线,允许心理计算对类似于图像、地图、图表或其他非命题表示的项目进行操作(Johnson-Laird 2004:187;麦克德莫特 2001:69;平克 2005:7;斯洛曼 1978:144-176)。多元路线在应用于亚个人过程(如感知)和非人类动物时似乎特别合理。Michael Rescorla(2009a,b)调查了认知地图的研究(Tolman 1948;O’Keefe 和 Nadel 1978;Gallistel 1990),这表明一些动物可能通过计算更类似于地图而不是句子的心理表征来导航。Elisabeth Camp(2009)引用了对狒狒社会互动的研究(Cheney 和 Seyfarth 2007),认为狒狒可能通过非感知树结构表示来编码社会支配关系。
CCTM+RTM is schematic. To fill in the schema, one must provide detailed computational models of specific mental processes. A complete model will:
CCTM+RTM 是原理图。要填写图式,必须提供特定心理过程的详细计算模型。完整的模型将:
- describe the Mentalese symbols manipulated by the process;
描述该过程操纵的 Mentalese 符号; - isolate elementary operations that manipulate the symbols (e.g., inscribing a symbol in a memory location); and
隔离操作符号的基本操作(例如,在内存位置写入符号);和 - delineate mechanical rules governing application of elementary operations.
描述控制基本操作应用的机械规则。
By providing a detailed computational model, we decompose a complex mental process into a series of elementary operations governed by precise, routine instructions.
通过提供详细的计算模型,我们将复杂的心理过程分解为一系列由精确、常规指令控制的基本操作。
CCTM+RTM remains neutral in the traditional debate between physicalism and substance dualism. A Turing-style model proceeds at a very abstract level, not saying whether mental computations are implemented by physical stuff or Cartesian soul-stuff (Block 1983: 522). In practice, all proponents of CCTM+RTM embrace a broadly physicalist outlook. They hold that mental computations are implemented not by soul-stuff but rather by the brain. On this view, Mentalese symbols are realized by neural states, and computational operations over Mentalese symbols are realized by neural processes. Ultimately, physicalist proponents of CCTM+RTM must produce empirically well-confirmed theories that explain how exactly neural activity implements Turing-style computation. As Gallistel and King (2009) emphasize, we do not currently have such theories—though see Zylberberg, Dehaene, Roelfsema, and Sigman (2011) for some speculations.
CCTM+RTM 在物理主义和物质二元论之间的传统辩论中保持中立。图灵式模型在一个非常抽象的层面上进行,没有说心理计算是由物理物质还是笛卡尔的灵魂物质实现(Block 1983:522)。在实践中,CCTM+RTM 的所有支持者都接受了广泛的物理主义观点。他们认为,心理计算不是由灵魂物质实现的,而是由大脑实现的。根据这种观点,Mentalese 符号是通过神经状态实现的,而对 Mentalese 符号的计算操作是通过神经过程实现的。最终,CCTM+RTM 的物理主义支持者必须提出经过实证证实的理论,以解释神经活动究竟是如何实现图灵式计算的。正如 Gallistel 和 King(2009)所强调的那样,我们目前没有这样的理论——尽管一些推测参见 Zylberberg、Dehaene、Roelfsema 和 Sigman(2011)。
Fodor (1975) advances CCTM+RTM as a foundation for cognitive science. He discusses mental phenomena such as decision-making, perception, and linguistic processing. In each case, he maintains, our best scientific theories postulate Turing-style computation over mental representations. In fact, he argues that our only viable theories have this form. He concludes that CCTM+RTM is “the only game in town”. Many cognitive scientists argue along similar lines. C.R. Gallistel and Adam King (2009), Philip Johnson-Laird (1988), Allen Newell and Herbert Simon (1976), and Zenon Pylyshyn (1984) all recommend Turing-style computation over mental symbols as the best foundation for scientific theorizing about the mind.
Fodor(1975)将 CCTM+RTM 作为认知科学的基础。他讨论了决策、感知和语言处理等心理现象。他坚持认为,在每种情况下,我们最好的科学理论都假设图灵式计算优于心理表征。事实上,他认为我们唯一可行的理论具有这种形式。他得出结论,CCTM+RTM 是“城里唯一的游戏”。许多认知科学家都持类似的观点。C.R. Gallistel 和 Adam King(2009)、Philip Johnson-Laird(1988)、Allen Newell 和 Herbert Simon(1976)以及 Zenon Pylyshyn(1984)都建议将心理符号的图灵式计算作为关于心灵的科学理论化的最佳基础。
4. Neural networks 4. 神经网络
In the 1980s, connectionism emerged as a prominent rival to classical computationalism. Connectionists draw inspiration from neurophysiology rather than logic and computer science. They employ computational models, neural networks, that differ significantly from Turing-style models. A neural network is a collection of interconnected nodes. Nodes fall into three categories: input nodes, output nodes, and hidden nodes (which mediate between input and output nodes). Nodes have activation values, given by real numbers. One node can bear a weighted connection to another node, also given by a real number. Activations of input nodes are determined exogenously: these are the inputs to computation. Total input activation of a hidden or output node is a weighted sum of the activations of nodes feeding into it. Activation of a hidden or output node is a function of its total input activation; the particular function varies with the network. During neural network computation, waves of activation propagate from input nodes to output nodes, as determined by weighted connections between nodes.
在 1980 年代,联结主义成为经典计算主义的重要竞争对手。联结主义者从神经生理学而不是逻辑学和计算机科学中汲取灵感。它们采用的计算模型、神经网络,这与图灵风格的模型有很大不同。神经网络是互连节点的集合。节点分为三类:输入节点、输出节点和隐藏节点(在输入和输出节点之间进行调解)。节点具有由实数给出的激活值。一个节点可以承载与另一个节点的加权连接,该连接也由实数给出。输入节点的激活是外生确定的:这些是计算的输入。隐藏节点或输出节点的总输入激活量是馈入该节点的节点激活量的加权和。隐藏节点或输出节点的激活是其总 input 激活的函数;具体功能因网络而异。在神经网络计算期间,激活波从输入节点传播到输出节点,这由节点之间的加权连接决定。
In a feedforward network, weighted connections flow only in one direction. Recurrent networks have feedback loops, in which connections emanating from hidden units circle back to hidden units. Recurrent networks are less mathematically tractable than feedforward networks. However, they figure crucially in psychological modeling of various phenomena, such as phenomena that involve some kind of memory (Elman 1990).
在前馈网络中,加权连接仅沿一个方向流动。循环网络具有反馈回路,其中从隐藏单元发出的连接会循环回隐藏单元。循环网络在数学上不如前馈网络那么容易处理。然而,它们在各种现象的心理建模中发挥着至关重要的作用,例如涉及某种记忆的现象(Elman 1990)。
Weights in a neural network are typically mutable, evolving in accord with a learning algorithm. The literature offers various learning algorithms, but the basic idea is usually to adjust weights so that actual outputs gradually move closer to the target outputs one would expect for the relevant inputs. The backpropagation algorithm is a widely used algorithm of this kind (Rumelhart, Hinton, and Williams 1986).
神经网络中的权重通常是可变的,会随着学习算法的发展而变化。文献提供了各种学习算法,但基本思想通常是调整权重,以便实际输出逐渐接近人们对相关输入的预期目标输出。反向传播算法是此类广泛使用的算法(Rumelhart, Hinton, and Williams 1986)。
Connectionism traces back to McCulloch and Pitts (1943), who studied networks of interconnected logic gates (e.g., AND-gates and OR-gates). One can view a network of logic gates as a neural network, with activations confined to two values (0 and 1) and activation functions given by the usual truth-functions. McCulloch and Pitts advanced logic gates as idealized models of individual neurons. Their discussion exerted a profound influence on computer science (von Neumann 1945). Modern digital computers are simply networks of logic gates. Within cognitive science, however, researchers usually focus upon networks whose elements are more “neuron-like” than logic gates. In particular, modern-day connectionists typically emphasize analog neural networks whose nodes take continuous rather than discrete activation values. Some authors even use the phrase “neural network” so that it exclusively denotes such networks.
连接主义可以追溯到 McCulloch 和 Pitts(1943),他们研究了互连逻辑门的网络(例如,AND 门和 OR 门)。可以将逻辑门网络视为神经网络,激活仅限于两个值(0 和 1)和由通常的真值函数给出的激活函数。McCulloch 和 Pitts 将逻辑门作为单个神经元的理想化模型进行了改进。他们的讨论对计算机科学产生了深远的影响(von Neumann 1945)。现代数字计算机只是逻辑门网络。然而,在认知科学中,研究人员通常关注其元素比逻辑门更“像神经元”的网络。特别是,现代连接主义者通常强调模拟神经网络,其节点采用连续而不是离散的激活值。一些作者甚至使用短语 “neural network” 来专门表示此类网络。
Neural networks received relatively scant attention from cognitive scientists during the 1960s and 1970s, when Turing-style models dominated. The 1980s witnessed a huge resurgence of interest in neural networks, especially analog neural networks, with the two-volume Parallel Distributed Processing (Rumelhart, McClelland, and the PDP research group, 1986; McClelland, Rumelhart, and the PDP research group, 1987) serving as a manifesto. Researchers constructed connectionist models of diverse phenomena: object recognition, speech perception, sentence comprehension, cognitive development, and so on. Impressed by connectionism, many researchers concluded that CCTM+RTM was no longer “the only game in town”.
在 1960 年代和 1970 年代,当图灵式模型占据主导地位时,神经网络受到认知科学家的关注相对较少。1980 年代见证了人们对神经网络,尤其是模拟神经网络的兴趣大幅复苏,出现了两卷本的并行分布式处理(Rumelhart、McClelland 和 PDP 研究小组,1986 年;McClelland、Rumelhart 和 PDP 研究小组,1987 年)作为宣言。研究人员构建了各种现象的连接主义模型:物体识别、语音感知、句子理解、认知发展等。联结主义给许多研究人员留下了深刻的印象,他们得出结论,CCTM+RTM 不再是“城里唯一的游戏”。
In the 2010s, a class of computational models known as deep neural networks became quite popular (Krizhevsky, Sutskever, and Hinton 2012; LeCun, Bengio, and Hinton 2015). These models are neural networks with multiple layers of hidden nodes (sometimes hundreds of such layers). Deep neural networks—trained on large data sets through one or another learning algorithm (usually backpropagation)—have achieved great success in many areas of AI, including object recognition and strategic game-playing. Deep neural networks are now widely deployed in commercial applications, and they are the focus of extensive ongoing investigation within both academia and industry. Researchers have also begun using them to model the mind (e.g. Marblestone, Wayne, and Kording 2016; Kriegeskorte 2015).
在 2010 年代,一类被称为深度神经网络的计算模型变得非常流行(Krizhevsky、Sutskever 和 Hinton 2012;LeCun、Bengio 和 Hinton 2015 年)。这些模型是具有多层隐藏节点(有时有数百个隐藏节点)的神经网络。深度神经网络 — 通过一种或另一种学习算法(通常是反向传播)在大型数据集上进行训练 — 在 AI 的许多领域都取得了巨大成功,包括对象识别和战略游戏。深度神经网络现已广泛部署在商业应用中,并且是学术界和工业界持续广泛研究的重点。研究人员也开始使用它们来模拟心智(例如 Marblestone、Wayne 和 Kording 2016;Kriegeskorte 2015 年)。
For a detailed overview of neural networks, see Haykin (2008). For a user-friendly introduction, with an emphasis on psychological applications, see Marcus (2001). For a philosophically oriented introduction to deep neural networks, see Buckner (2019).
有关神经网络的详细概述,请参阅 Haykin(2008)。有关用户友好的介绍,重点是心理学应用,请参阅 Marcus(2001)。有关深度神经网络的哲学导向介绍,请参阅 Buckner(2019)。
4.1 Relation between neural networks and classical computation 4.1 神经网络与传统计算的关系
Neural networks have a very different “feel” than classical (i.e., Turing-style) models. Yet classical computation and neural network computation are not mutually exclusive:
神经网络的 “感觉” 与传统(即 Turing 风格)模型截然不同。然而,经典计算和神经网络计算并不是相互排斥的:
- One can implement a neural network in a classical model. Indeed, every neural network ever physically constructed has been implemented on a digital computer.
可以在经典模型中实现神经网络。事实上,每个物理构建的神经网络都是在数字计算机上实现的。 - One can implement a classical model in a neural network. Modern digital computers implement Turing-style computation in networks of logic gates. Alternatively, one can implement Turing-style computation using an analog recurrent neural network whose nodes take continuous activation values (Graves, Wayne, and Danihelka 2014, Other Internet Resources; Siegelmann and Sontag 1991; Siegelmann and Sontag 1995).
可以在神经网络中实现经典模型。现代数字计算机在逻辑门网络中实现图灵式计算。或者,可以使用模拟递归神经网络实现图灵式计算,其节点采用连续激活值(Graves、Wayne 和 Danihelka 2014,其他互联网资源;Siegelmann 和 Sontag 1991;Siegelmann 和 Sontag 1995 年)。
Although some researchers suggest a fundamental opposition between classical computation and neural network computation, it seems more accurate to identify two modeling traditions that overlap in certain cases but not others (cf. Boden 1991; Piccinini 2008b). In this connection, it is also worth noting that classical computationalism and connectionist computationalism have their common origin in the work of McCulloch and Pitts.
尽管一些研究人员认为经典计算和神经网络计算之间存在根本的对立,但确定两种在某些情况下重叠但其他情况下不重叠的建模传统似乎更准确(参见 Boden 1991;Piccinini 2008b)。在这方面,还值得注意的是,经典计算主义和联结主义计算主义在麦卡洛克和皮茨的工作中有它们的共同起源。
Philosophers often say that classical computation involves “rule-governed symbol manipulation” while neural network computation is non-symbolic. The intuitive picture is that “information” in neural networks is globally distributed across the weights and activations, rather than concentrated in localized symbols. However, the notion of “symbol” itself requires explication, so it is often unclear what theorists mean by describing computation as symbolic versus non-symbolic. As mentioned in §1, the Turing formalism places very few conditions on “symbols”. Regarding primitive symbols, Turing assumes just that there are finitely many of them and that they can be inscribed in read/write memory locations. Neural networks can also manipulate symbols satisfying these two conditions: as just noted, one can implement a Turing-style model in a neural network.
哲学家经常说,经典计算涉及“规则控制的符号操作”,而神经网络计算是非符号的。直观的情况是,神经网络中的“信息”在全球范围内分布在权重和激活中,而不是集中在局部符号中。然而,“符号”的概念本身需要解释,因此理论家将计算描述为符号与非符号的含义通常不清楚。如 §1 中所述,图灵形式对 “符号” 施加的条件非常少。关于原始符号,图灵只假设它们的数量有限,并且它们可以刻在读/写内存位置。神经网络还可以操作满足这两个条件的符号:如前所述,可以在神经网络中实现图灵式模型。
Many discussions of the symbolic/non-symbolic dichotomy employ a more robust notion of “symbol”. On the more robust approach, a symbol is the sort of thing that represents a subject matter. Thus, something is a symbol only if it has semantic or representational properties. If we employ this more robust notion of symbol, then the symbolic/non-symbolic distinction cross-cuts the distinction between Turing-style computation and neural network computation. A Turing machine need not employ symbols in the more robust sense. As far as the Turing formalism goes, symbols manipulated during Turing computation need not have representational properties (Chalmers 2011). Conversely, a neural network can manipulate symbols with representational properties. Indeed, an analog neural network can manipulate symbols that have a combinatorial syntax and semantics (Horgan and Tienson 1996; Marcus 2001).
许多关于符号/非符号二分法的讨论都采用了更强大的“符号”概念。在更稳健的方法中,符号是代表主题的那种事物。因此,只有当某物具有语义或表征属性时,它才是符号。如果我们采用这种更健壮的符号概念,那么符号/非符号的区别就跨越了图灵式计算和神经网络计算之间的区别。图灵机不需要使用更稳健意义上的符号。就图灵形式而言,在图灵计算过程中操纵的符号不需要具有表示属性(Chalmers 2011)。相反,神经网络可以操纵具有表示属性的符号。事实上,模拟神经网络可以操纵具有组合语法和语义的符号(Horgan 和 Tienson 1996;Marcus 2001 年)。
Following Steven Pinker and Alan Prince (1988), we may distinguish between eliminative connectionism and implementationist connectionism.
根据 Steven Pinker 和 Alan Prince(1988)的说法,我们可以区分消除连接主义和实施主义连接主义。
Eliminative connectionists advance connectionism as a rival to classical computationalism. They argue that the Turing formalism is irrelevant to psychological explanation. Often, though not always, they seek to revive the associationist tradition in psychology, a tradition that CCTM had forcefully challenged. Often, though not always, they attack the mentalist, nativist linguistics pioneered by Noam Chomsky (1965). Often, though not always, they manifest overt hostility to the very notion of mental representation. But the defining feature of eliminative connectionism is that it uses neural networks as replacements for Turing-style models. Eliminative connectionists view the mind as a computing system of a radically different kind than the Turing machine. A few authors explicitly espouse eliminative connectionism (Churchland 1989; Rumelhart and McClelland 1986; Horgan and Tienson 1996), and many others incline towards it.
消除连接论者将连接论作为经典计算主义的竞争对手。他们认为图灵形式主义与心理学解释无关。他们经常(尽管并非总是)寻求恢复心理学中的联想主义传统,这是 CCTM 强烈挑战的传统。他们经常(尽管并非总是)攻击由 Noam Chomsky(1965)开创的心理主义、本土主义语言学。通常,尽管并非总是如此,他们表现出对心理表征概念的公开敌意。但消除连接主义的决定性特征是它使用神经网络来替代图灵式模型。消除连接论者将心智视为与图灵机截然不同的计算系统。一些作者明确支持消除连接主义(Churchland 1989;Rumelhart 和 McClelland 1986;Horgan 和 Tienson 1996),以及许多其他人倾向于它。
Implementationist connectionism is a more ecumenical position. It allows a potentially valuable role for both Turing-style models and neural networks, operating harmoniously at different levels of description (Marcus 2001; Smolensky 1988). A Turing-style model is higher-level, whereas a neural network model is lower-level. The neural network illuminates how the brain implements the Turing-style model, just as a description in terms of logic gates illuminates how a personal computer executes a program in a high-level programming language.
实施主义联结主义是一种更普世的立场。它允许图灵式模型和神经网络发挥潜在的有价值的作用,在不同描述级别和谐地运行(Marcus 2001;Smolensky 1988 年)。图灵式模型是高级模型,而神经网络模型是较低级模型。神经网络阐明了大脑如何实现图灵式模型,就像逻辑门方面的描述阐明了个人计算机如何以高级编程语言执行程序一样。
4.2 Arguments for connectionism 4.2 联结主义的论点
Connectionism excites many researchers because of the analogy between neural networks and the brain. Nodes resemble neurons, while connections between nodes resemble synapses. Connectionist modeling therefore seems more “biologically plausible” than classical modeling. A connectionist model of a psychological phenomenon apparently captures (in an idealized way) how interconnected neurons might generate the phenomenon.
联结主义让许多研究人员兴奋不已,因为神经网络和大脑之间的类比。节点类似于神经元,而节点之间的连接类似于突触。因此,联结主义模型似乎比经典模型更“生物学上合理”。心理现象的连接主义模型显然(以理想化的方式)捕捉了相互关联的神经元如何产生这种现象。
When evaluating the argument from biological plausibility, one should recognize that neural networks vary widely in how closely they match actual brain activity. Many networks that figure prominently in connectionist writings are not so biologically plausible (Bechtel and Abrahamsen 2002: 341–343; Bermúdez 2010: 237–239; Clark 2014: 87–89; Harnish 2002: 359–362). A few examples:
当从生物学合理性评估论点时,人们应该认识到神经网络与实际大脑活动的匹配程度差异很大。许多在联结主义著作中占有突出地位的网络在生物学上并不那么合理(Bechtel 和 Abrahamsen 2002:341-343;Bermúdez 2010:237-239;克拉克 2014:87-89;Harnish 2002:359-362)。几个例子:
- Real neurons are much more heterogeneous than the interchangeable nodes that figure in typical connectionist networks.
真正的神经元比典型连接主义网络中的可互换节点更具异质性。 - Real neurons emit discrete spikes (action potentials) as outputs. But the nodes that figure in many prominent neural networks, including the best known deep neural networks, instead have continuous outputs.
真实神经元发射离散的尖峰(动作电位)作为输出。但是,许多著名的神经网络(包括最著名的深度神经网络)中的节点反而具有连续的输出。 - The backpropagation algorithm requires that weights between nodes can vary between excitatory and inhibitory, yet actual synapses cannot so vary (Crick and Asanuma 1986). Moreover, the algorithm assumes target outputs supplied exogenously by modelers who know the desired answer. In that sense, learning is supervised. Very little learning in actual biological systems involves anything resembling supervised training.
反向传播算法要求节点之间的权重可以在兴奋性和抑制性之间变化,但实际的突触不能如此变化(Crick 和 Asanuma 1986)。此外,该算法假设目标输出由知道所需答案的建模者外生提供。从这个意义上说,学习是有监督的。在实际生物系统中,很少有学习涉及类似于监督训练的东西。
On the other hand, some neural networks are more biologically realistic (Buckner and Garson 2019; Illing, Gerstner, and Brea 2019). For instance, there are neural networks that replace backpropagation with more realistic learning algorithms, such as a reinforcement learning algorithm (Pozzi, Bohté, and Roelfsema 2019, Other Internet Resources) or an unsupervised learning algorithm (Krotov and Hopfield 2019). There are also neural networks whose nodes output discrete spikes roughly akin to those emitted by real neurons in the brain (Maass 1996; Buesing, Bill, Nessler, and Maass 2011).
另一方面,一些神经网络在生物学上更真实(Buckner 和 Garson 2019;Illing、Gerstner 和 Brea 2019 年)。例如,有些神经网络用更真实的学习算法取代反向传播,例如强化学习算法(Pozzi、Bohté 和 Roelfsema 2019,其他互联网资源)或无监督学习算法(Krotov 和 Hopfield 2019)。还有一些神经网络,其节点输出的离散尖峰大致类似于大脑中真实神经元发出的尖峰(Maass 1996;Buesing、Bill、Nessler 和 Maass 2011 年)。
Even when a neural network is not biologically plausible, it may still be more biologically plausible than classical models. Neural networks certainly seem closer than Turing-style models, in both details and spirit, to neurophysiological description. Many cognitive scientists worry that CCTM reflects a misguided attempt at imposing the architecture of digital computers onto the brain. Some doubt that the brain implements anything resembling digital computation, i.e., computation over discrete configurations of digits (Piccinini and Bahar 2013). Others doubt that brains display clean Turing-style separation between central processor and read/write memory (Dayan 2009). Neural networks fare better on both scores: they do not require computation over discrete configurations of digits, and they do not postulate a clean separation between central processor and read/write memory.
即使神经网络在生物学上不合理,它仍然可能比经典模型在生物学上更合理。神经网络在细节和精神上似乎都比图灵式模型更接近神经生理学描述。许多认知科学家担心 CCTM 反映了将数字计算机架构强加到大脑的错误尝试。有些人怀疑大脑是否实现了任何类似于数字计算的东西,即对数字的离散配置进行计算(Piccinini 和 Bahar 2013)。其他人怀疑大脑在中央处理器和读/写内存之间表现出清晰的图灵式分离(Dayan 2009)。神经网络在这两个分数上都表现得更好:它们不需要对数字的离散配置进行计算,并且它们不假设中央处理器和读/写内存之间完全分离。
Classical computationalists typically reply that it is premature to draw firm conclusions based upon biological plausibility, given how little we understand about the relation between neural, computational, and cognitive levels of description (Gallistel and King 2009; Marcus 2001). Using measurement techniques such as cell recordings and functional magnetic resonance imaging (fMRI), and drawing upon disciplines as diverse as physics, biology, AI, information theory, statistics, graph theory, and dynamical systems theory, neuroscientists have accumulated substantial knowledge about the brain at varying levels of granularity (Zednik 2019). We now know quite a lot about individual neurons, about how neurons interact within neural populations, about the localization of mental activity in cortical regions (e.g. the visual cortex), and about interactions among cortical regions. Yet we still have a tremendous amount to learn about how neural tissue accomplishes the tasks that it surely accomplishes: perception, reasoning, decision-making, language acquisition, and so on. Given our present state of relative ignorance, it would be rash to insist that the brain does not implement anything resembling Turing computation.
古典计算论者通常回答说,鉴于我们对神经、计算和认知描述层次之间的关系知之甚少,现在根据生物学的合理性得出确切的结论还为时过早(Gallistel 和 King 2009;Marcus 2001 年)。使用细胞记录和功能磁共振成像(fMRI)等测量技术,并借鉴物理学、生物学、人工智能、信息论、统计学、图论和动力系统理论等不同学科,神经科学家在不同粒度级别积累了有关大脑的大量知识(Zednik 2019)。我们现在对单个神经元、神经元如何在神经群内相互作用、心理活动在皮层区域(例如视觉皮层)中的定位以及皮层区域之间的相互作用有了相当多的了解。然而,关于神经组织如何完成它肯定会完成的任务,我们仍有大量知识需要学习:感知、推理、决策、语言习得等。鉴于我们目前相对无知的状态,坚持认为大脑不实现任何类似于图灵计算的东西是轻率的。
Connectionists offer numerous further arguments that we should employ connectionist models instead of, or in addition to, classical models. See the entry connectionism for an overview. For purposes of this entry, we mention two additional arguments.
联结主义者提供了许多进一步的论点,即我们应该使用联结主义模型来代替经典模型,或者除了经典模型之外。有关概述,请参阅条目 connectionism。出于本条目的目的,我们提到了两个额外的参数。
The first argument emphasizes learning (Bechtel and Abrahamsen 2002: 51). A vast range of cognitive phenomena involve learning from experience. Many connectionist models are explicitly designed to model learning, through backpropagation or some other algorithm that modifies the weights between nodes. By contrast, connectionists often complain that there are no good classical models of learning. Classical computationalists can respond by citing perceived defects of connectionist learning algorithms (e.g., the heavy reliance of backpropagation upon supervised training). Classical computationalists can also cite Bayesian decision theory, which models learning as probabilistic updating. More specifically, classical computationalists can cite the achievements of Bayesian cognitive science, which uses Bayesian decision theory to construct mathematical models of mental activity (Ma 2019). Over the past few decades, Bayesian cognitive science has accrued many explanatory successes. This impressive track record suggests that some mental processes are Bayesian or approximately Bayesian (Rescorla 2020). Moreover, the advances mentioned in §2 show how classical computing systems can execute or at least approximately execute Bayesian updating in various realistic scenarios. These developments provide hope that classical computation can model many important cases of learning.
第一个论点强调学习(Bechtel 和 Abrahamsen 2002:51)。大量的认知现象都涉及从经验中学习。许多连接主义模型被明确设计为通过反向传播或其他一些修改节点之间权重的算法来对学习进行建模。相比之下,联结主义者经常抱怨没有好的经典学习模式。经典计算论者可以通过引用联结主义学习算法的感知缺陷来做出回应(例如,严重依赖反向传播对监督训练)。经典计算论者还可以引用贝叶斯决策理论,该理论将学习建模为概率更新。更具体地说,经典计算论者可以引用贝叶斯认知科学的成就,该科学使用贝叶斯决策理论来构建心理活动的数学模型(马 2019)。在过去的几十年里,贝叶斯认知科学积累了许多解释性的成功。这一令人印象深刻的记录表明,一些心理过程是贝叶斯或近似贝叶斯的(Rescorla 2020)。此外,§2 中提到的进步展示了经典计算系统如何在各种现实场景中执行或至少近似执行贝叶斯更新。这些发展为经典计算可以模拟许多重要的学习案例带来了希望。
The second argument emphasizes speed of computation. Neurons are much slower than silicon-based components of digital computers. For this reason, neurons could not execute serial computation quickly enough to match rapid human performance in perception, linguistic comprehension, decision-making, etc. Connectionists maintain that the only viable solution is to replace serial computation with a “massively parallel” computational architecture—precisely what neural networks provide (Feldman and Ballard 1982; Rumelhart 1989). However, this argument is only effective against classical computationalists who insist upon serial processing. As noted in §3, some Turing-style models involve parallel processing. Many classical computationalists are happy to allow “massively parallel” mental computation, and the argument gains no traction against these researchers. That being said, the argument highlights an important question that any computationalist—whether classical, connectionist, or otherwise—must address: How does a brain built from relatively slow neurons execute sophisticated computations so quickly? Neither classical nor connectionist computationalists have answered this question satisfactorily (Gallistel and King 2009: 174 and 265).
第二个参数强调计算速度。神经元比数字计算机的硅基组件慢得多。出于这个原因,神经元无法足够快地执行连续计算,以匹配人类在感知、语言理解、决策等方面的快速表现。连接主义者坚持认为,唯一可行的解决方案是用“大规模并行”计算架构取代串行计算——这正是神经网络所提供的(Feldman 和 Ballard 1982;Rumelhart 1989 年)。然而,这种论点只对坚持串行处理的经典计算论者有效。如 §3 中所述,一些图灵风格的模型涉及并行处理。许多经典计算论者乐于允许“大规模并行”心理计算,而这一论点对这些研究人员没有任何支持。话虽如此,该论点突出了任何计算论者(无论是古典计算论者、联结论者还是其他计算论者)都必须解决的一个重要问题:由相对较慢的神经元构建的大脑是如何如此快速地执行复杂的计算的?无论是古典计算论者还是连接主义计算论者都没有令人满意地回答这个问题(Gallistel 和 King 2009:174 和 265)。
4.3 Systematicity and productivity 4.3 系统性和生产力
Fodor and Pylyshyn (1988) offer a widely discussed critique of eliminativist connectionism. They argue that systematicity and productivity fail in connectionist models, except when the connectionist model implements a classical model. Hence, connectionism does not furnish a viable alternative to CCTM. At best, it supplies a low-level description that helps bridge the gap between Turing-style computation and neuroscientific description.
Fodor 和 Pylyshyn(1988)对消除连接论提出了广泛讨论的批评。他们认为,系统性和生产力在联结主义模型中是失败的,除非联结主义模型实现了经典模型。因此,联结主义并不能提供 CCTM 的可行替代方案。充其量,它提供了一个低级描述,有助于弥合图灵式计算和神经科学描述之间的差距。
This argument has elicited numerous replies and counter-replies. Some argue that neural networks can exhibit systematicity without implementing anything like classical computational architecture (Horgan and Tienson 1996; Chalmers 1990; Smolensky 1991; van Gelder 1990). Some argue that Fodor and Pylyshyn vastly exaggerate systematicity (Johnson 2004) or productivity (Rumelhart and McClelland 1986), especially for non-human animals (Dennett 1991). These issues, and many others raised by Fodor and Pylyshyn’s argument, have been thoroughly investigated in the literature. For further discussion, see Bechtel and Abrahamsen (2002: 156–199), Bermúdez (2005: 244–278), Chalmers (1993), Clark (2014: 84–86), and the encyclopedia entries on the language of thought hypothesis and on connectionism.
这一论点引起了无数的回应和反驳。一些人认为,神经网络可以在不实现类似经典计算架构的东西的情况下表现出系统性(Horgan 和 Tienson 1996;Chalmers 1990 年;斯摩棱斯基 1991;van Gelder 1990 年)。一些人认为 Fodor 和 Pylyshyn 大大夸大了系统性(Johnson 2004)或生产力(Rumelhart 和 McClelland 1986),特别是对于非人类动物(Dennett 1991)。这些问题,以及 Fodor 和 Pylyshyn 的论点提出的许多其他问题,已经在文献中进行了彻底的调查。有关进一步的讨论,请参阅 Bechtel 和 Abrahamsen(2002: 156–199)、Bermúdez(2005: 244–278)、Chalmers(1993)、Clark(2014: 84–86)以及关于思想语言假说和联结主义的百科全书条目。
Gallistel and King (2009) advance a related but distinct productivity argument. They emphasize productivity of mental computation, as opposed to productivity of mental states. Through detailed empirical case studies, they argue that many non-human animals can extract, store, and retrieve detailed records of the surrounding environment. For example, the Western scrub jay records where it cached food, what kind of food it cached in each location, when it cached the food, and whether it has depleted a given cache (Clayton, Emery, and Dickinson 2006). The jay can access these records and exploit them in diverse computations: computing whether a food item stored in some cache is likely to have decayed; computing a route from one location to another; and so on. The number of possible computations a jay can execute is, for all practical purposes, infinite.
Gallistel 和 King(2009)提出了一个相关但不同的生产力论点。他们强调心理计算的生产力,而不是心理状态的生产力。通过详细的实证案例研究,他们认为许多非人类动物可以提取、存储和检索周围环境的详细记录。例如,西部灌木松鸦记录了它缓存食物的位置、在每个位置缓存的食物类型、缓存食物的时间以及它是否耗尽了给定的缓存(Clayton、Emery 和 Dickinson 2006)。松鸦可以访问这些记录并在各种计算中利用它们:计算存储在某个缓存中的食物是否可能已经腐烂;计算从一个位置到另一个位置的路线;等等。对于所有实际目的,jay 可以执行的计算数量是无限的。
CCTM explains the productivity of mental computation by positing a central processor that stores and retrieves symbols in addressable read/write memory. When needed, the central processor can retrieve arbitrary, unpredicted combinations of symbols from memory. In contrast, Gallistel and King argue, connectionism has difficulty accommodating the productivity of mental computation. Although Gallistel and King do not carefully distinguish between eliminativist and implementationist connectionism, we may summarize their argument as follows:
CCTM 通过假设一个中央处理器在可寻址读/写存储器中存储和检索符号来解释心理计算的生产力。需要时,中央处理器可以从内存中检索任意的、不可预测的符号组合。相比之下,Gallistel 和 King 认为,联结主义难以适应心理计算的生产力。尽管 Gallistel 和 King 没有仔细区分消除主义和实施主义联结主义,但我们可以将他们的论点总结如下:
- Eliminativist connectionism cannot explain how organisms combine stored memories (e.g., cache locations) for computational purposes (e.g., computing a route from one cache to another). There are a virtual infinity of possible combinations that might be useful, with no predicting in advance which pieces of information must be combined in future computations. The only computationally tractable solution is symbol storage in readily accessible read/write memory locations—a solution that eliminativist connectionists reject.
消除连接论无法解释生物体如何为计算目的(例如,计算从一个缓存到另一个缓存的路线)组合存储的记忆(例如,缓存位置)。可能有用的可能组合几乎是无限的,无需提前预测在未来的计算中必须组合哪些信息。唯一可在计算上处理的解决方案是将符号存储在易于访问的读/写内存位置——消除连接论者拒绝这种解决方案。 - Implementationist connectionists can postulate symbol storage in read/write memory, as implemented by a neural network. However, the mechanisms that connectionists usually propose for implementing memory are not plausible. Existing proposals are mainly variants upon a single idea: a recurrent neural network that allows reverberating activity to travel around a loop (Elman 1990). There are many reasons why the reverberatory loop model is hopeless as a theory of long-term memory. For example, noise in the nervous system ensures that signals would rapidly degrade in a few minutes. Implementationist connectionists have thus far offered no plausible model of read/write memory.[2]
实现论者连接论者可以假设符号存储在读/写存储器中,就像神经网络所实现的那样。然而,连接论者通常提出的实现记忆的机制并不合理。现有的提案主要是基于一个想法的变体:一个允许混响活动围绕循环传播的递归神经网络(Elman 1990)。混响循环模型作为长期记忆理论无望的原因有很多。例如,神经系统中的噪声确保信号在几分钟内迅速衰减。到目前为止,实现主义连接主义者还没有提供合理的读/写内存模型。[2]
Gallistel and King conclude that CCTM is much better suited than either eliminativist or implementationist connectionism to explain a vast range of cognitive phenomena.
Gallistel 和 King 得出结论,CCTM 比消除主义或实施主义联结主义更适合解释广泛的认知现象。
Critics attack this new productivity argument from various angles, focusing mainly on the empirical case studies adduced by Gallistel and King. Peter Dayan (2009), John Donahoe (2010), and Christopher Mole (2014) argue that biologically plausible neural network models can accommodate at least some of the case studies. Dayan and Donahoe argue that empirically adequate neural network models can dispense with anything resembling read/write memory. Mole argues that, in certain cases, empirically adequate neural network models can implement the read/write memory mechanisms posited by Gallistel and King. Debate on these fundamental issues seems poised to continue well into the future.
批评者从各个角度攻击这一新的生产力论点,主要集中在 Gallistel 和 King 提出的实证案例研究上。Peter Dayan(2009)、John Donahoe(2010)和 Christopher Mole(2014)认为,生物学上合理的神经网络模型至少可以容纳一些案例研究。Dayan 和 Donahoe 认为,经验上充分的神经网络模型可以省去任何类似于读/写内存的东西。Mole 认为,在某些情况下,经验上适当的神经网络模型可以实现 Gallistel 和 King 提出的读/写记忆机制。关于这些基本问题的辩论似乎将在未来继续进行。
4.4 Computational neuroscience 4.4 计算神经科学
Computational neuroscience describes the nervous system through computational models. Although this research program is grounded in mathematical modeling of individual neurons, the distinctive focus of computational neuroscience is systems of interconnected neurons. Computational neuroscience usually models these systems as neural networks. In that sense, it is a variant, off-shoot, or descendant of connectionism. However, most computational neuroscientists do not self-identify as connectionists. There are several differences between connectionism and computational neuroscience:
计算神经科学通过计算模型描述神经系统。尽管这项研究计划以单个神经元的数学建模为基础,但计算神经科学的独特重点是互连神经元的系统。计算神经科学通常将这些系统建模为神经网络。从这个意义上说,它是联结主义的变体、分支或后代。然而,大多数计算神经科学家并不认为自己是连接主义者。联结主义和计算神经科学之间有几个区别:
- Neural networks employed by computational neuroscientists are much more biologically realistic than those employed by connectionists. The computational neuroscience literature is filled with talk about firing rates, action potentials, tuning curves, etc. These notions play at best a limited role in connectionist research, such as most of the research canvassed in (Rogers and McClelland 2014).
计算神经科学家使用的神经网络比连接主义者使用的神经网络在生物学上更真实。计算神经科学文献中充满了关于放电率、动作电位、调整曲线等的讨论。这些概念在联结主义研究中充其量的作用有限,例如(Rogers 和 McClelland 2014 年)中的大多数研究。 - Computational neuroscience is driven in large measure by knowledge about the brain, and it assigns huge importance to neurophysiological data (e.g., cell recordings). Connectionists place much less emphasis upon such data. Their research is primarily driven by behavioral data (although more recent connectionist writings cite neurophysiological data with somewhat greater frequency).
计算神经科学在很大程度上是由大脑知识驱动的,它非常重视神经生理学数据(例如,细胞记录)。联结主义者对这些数据的重视要少得多。他们的研究主要由行为数据驱动(尽管最近的连接主义著作引用神经生理学数据的频率更高)。 - Computational neuroscientists usually regard individual nodes in neural networks as idealized descriptions of actual neurons. Connectionists usually instead regard nodes as neuron-like processing units (Rogers and McClelland 2014) while remaining neutral about how exactly these units map onto actual neurophysiological entities.
计算神经科学家通常将神经网络中的单个节点视为实际神经元的理想化描述。连接论者通常将节点视为类似神经元的处理单元(Rogers 和 McClelland 2014),同时对这些单元如何准确地映射到实际的神经生理学实体保持中立。
One might say that computational neuroscience is concerned mainly with neural computation (computation by systems of neurons), whereas connectionism is concerned mainly with abstract computational models inspired by neural computation. But the boundaries between connectionism and computational neuroscience are admittedly somewhat porous. For an overview of computational neuroscience, see Trappenberg (2010) or Miller (2018).
有人可能会说,计算神经科学主要关注神经计算(由神经元系统进行的计算),而联结主义主要关注受神经计算启发的抽象计算模型。但不可否认,联结主义和计算神经科学之间的界限有些漏洞。有关计算神经科学的概述,请参阅 Trappenberg(2010)或 Miller(2018)。
Serious philosophical engagement with neuroscience dates back at least to Patricia Churchland’s Neurophilosophy (1986). As computational neuroscience matured, Churchland became one of its main philosophical champions (Churchland, Koch, and Sejnowski 1990; Churchland and Sejnowski 1992). She was joined by Paul Churchland (1995, 2007) and others (Eliasmith 2013; Eliasmith and Anderson 2003; Piccinini and Bahar 2013; Piccinini and Shagrir 2014). All these authors hold that theorizing about mental computation should begin with the brain, not with Turing machines or other inappropriate tools drawn from logic and computer science. They also hold that neural network modeling should strive for greater biological realism than connectionist models typically attain. Chris Eliasmith (2013) develops this neurocomputational viewpoint through the Neural Engineering Framework, which supplements computational neuroscience with tools drawn from control theory (Brogan 1990). He aims to “reverse engineer” the brain, building large-scale, biologically plausible neural network models of cognitive phenomena.
对神经科学的严肃哲学参与至少可以追溯到帕特里夏·丘奇兰(Patricia Churchland)的《神经哲学》(1986 年)。随着计算神经科学的成熟,Churchland 成为其主要的哲学冠军之一(Churchland、Koch 和 Sejnowski 1990;Churchland 和 Sejnowski 1992)。Paul Churchland(1995, 2007)和其他人(Eliasmith 2013;Eliasmith 和 Anderson 2003;Piccinini 和 Bahar 2013;Piccinini 和 Shagrir 2014)。所有这些作者都认为,关于心智计算的理论应该从大脑开始,而不是从图灵机或其他来自逻辑和计算机科学的不适当的工具开始。他们还认为,神经网络建模应该争取比连接主义模型通常达到的更大的生物现实主义。Chris Eliasmith(2013)通过神经工程框架发展了这种神经计算观点,该框架用来自控制理论的工具补充了计算神经科学(Brogan 1990)。他的目标是对大脑进行“逆向工程”,构建大规模的、生物学上合理的认知现象神经网络模型。
Computational neuroscience differs in a crucial respect from CCTM and connectionism: it abandons multiply realizability. Computational neuroscientists cite specific neurophysiological properties and processes, so their models do not apply equally well to (say) a sufficiently different silicon-based creature. Thus, computational neuroscience sacrifices a key feature that originally attracted philosophers to CTM. Computational neuroscientists will respond that this sacrifice is worth the resultant insight into neurophysiological underpinnings. But many computationalists worry that, by focusing too much on neural underpinnings, we risk losing sight of the cognitive forest for the neuronal trees. Neurophysiological details are important, but don’t we also need an additional abstract level of computational description that prescinds from such details? Gallistel and King (2009) argue that a myopic fixation upon what we currently know about the brain has led computational neuroscience to shortchange core cognitive phenomena such as navigation, spatial and temporal learning, and so on. Similarly, Edelman (2014) complains that the Neural Engineering Framework substitutes a blizzard of neurophysiological details for satisfying psychological explanations.
计算神经科学在 CCTM 和联结主义的一个关键方面有所不同:它放弃了多重可实现性。计算神经科学家引用了特定的神经生理特性和过程,因此他们的模型并不能同样适用于(比如)足够不同的硅基生物。因此,计算神经科学牺牲了最初吸引哲学家使用 CTM 的一个关键特征。计算神经科学家会回答说,这种牺牲是值得的,因为对神经生理学基础的了解是值得的。但许多计算论者担心,如果过于关注神经基础,我们就有可能忽视神经元树的认知森林。神经生理学细节很重要,但我们难道不需要从这些细节中衍生出的额外抽象的计算描述吗?Gallistel 和 King(2009)认为,对我们目前对大脑的了解的短视执着导致计算神经科学缩短了核心认知现象,例如导航、空间和时间学习等。同样,Edelman(2014)抱怨神经工程框架用令人满意的心理学解释取代了神经生理学细节的暴风雪。
Partly in response to such worries, some researchers propose an integrated cognitive computational neuroscience that connects psychological theories with neural implementation mechanisms (Naselaris et al. 2018; Kriegeskorte and Douglas 2018). The basic idea is to use neural network models to illuminate how mental processes are instantiated in the brain, thereby grounding multiply realizable cognitive description in the neurophysiological. A good example is recent work on neural implementation of Bayesian inference (e.g., Pouget et al. 2013; Orhan and Ma 2017; Aitchison and Lengyel 2016). Researchers articulate (multiply realizable) Bayesian models of various mental processes; they construct biologically plausible neural networks that execute or approximately execute the posited Bayesian computations; and they evaluate how well these neural network models fit with neurophysiological data.
部分为了回应这种担忧,一些研究人员提出了一种综合认知计算神经科学,将心理学理论与神经实施机制联系起来(Naselaris 等人,2018 年;Kriegeskorte 和 Douglas 2018 年)。基本思想是使用神经网络模型来阐明心理过程如何在大脑中实例化,从而将多重可实现的认知描述建立在神经生理学的基础上。一个很好的例子是最近关于贝叶斯推理的神经实现的工作(例如,Pouget 等人,2013 年;Orhan 和 马 2017;Aitchison 和 Lengyel 2016 年)。研究人员阐明了各种心理过程的(可乘实现的)贝叶斯模型;他们构建了生物学上合理的神经网络,用于执行或近似执行假定的贝叶斯计算;他们评估这些神经网络模型与神经生理学数据的拟合程度。
Despite the differences between connectionism and computational neuroscience, these two movements raise many similar issues. In particular, the dialectic from §4.4 regarding systematicity and productivity arises in similar form.
尽管联结主义和计算神经科学之间存在差异,但这两个运动引发了许多类似的问题。特别是,§4.4 中关于系统性和生产力的辩证法以类似的形式出现。
5. Computation and representation 5. 计算和表示
Philosophers and cognitive scientists use the term “representation” in diverse ways. Within philosophy, the most dominant usage ties representation to intentionality, i.e., the “aboutness” of mental states. Contemporary philosophers usually elucidate intentionality by invoking representational content. A representational mental state has a content that represents the world as being a certain way, so we can ask whether the world is indeed that way. Thus, representationally contentful mental states are semantically evaluable with respect to properties such as truth, accuracy, fulfillment, and so on. To illustrate:
哲学家和认知科学家以不同的方式使用“表征”一词。在哲学中,最主要的用法将表征与意向性联系起来,即心理状态的“关于性”。当代哲学家通常通过援引表征内容来阐明意向性。具象心理状态具有以某种方式表示世界的内容,因此我们可以询问世界是否确实是那样的。因此,表征内容化的心理状态在语义上是可评估的,例如真理、准确性、实现度等属性。举例说明:
- Beliefs are the sorts of things that can be true or false. My belief that Emmanuel Macron is French is true if Emmanuel Macron is French, false if he is not.
信念是那种可以是真也可以是假的事物。如果埃马纽埃尔·马克龙是法国人,我认为埃马纽埃尔·马克龙是法国人是正确的,如果他不是,那就错了。 - Perceptual states are the sorts of things that can be accurate or inaccurate. My perceptual experience as of a red sphere is accurate only if a red sphere is before me.
知觉状态是那种可能准确或不准确的事物。只有当红色球体在我面前时,我对红色球体的感知体验才是准确的。 - Desires are the sorts of things that can fulfilled or thwarted. My desire to eat chocolate is fulfilled if I eat chocolate, thwarted if I do not eat chocolate.
欲望是那种可以满足或挫败的事情。如果我吃巧克力,我想吃巧克力的愿望就会得到满足,如果我不吃巧克力,我的愿望就会受挫。
Beliefs have truth-conditions (conditions under which they are true), perceptual states have accuracy-conditions (conditions under which they are accurate), and desires have fulfillment-conditions (conditions under which they are fulfilled).
信念具有真理条件(它们为真的条件),知觉状态具有准确性条件(它们准确的条件),欲望具有满足条件(它们得到满足的条件)。
In ordinary life, we frequently predict and explain behavior by invoking beliefs, desires, and other representationally contentful mental states. We identify these states through their representational properties. When we say “Frank believes that Emmanuel Macron is French”, we specify the condition under which Frank’s belief is true (namely, that Emmanuel Macron is French). When we say “Frank wants to eat chocolate”, we specify the condition under which Frank’s desire is fulfilled (namely, that Frank eats chocolate). So folk psychology assigns a central role to intentional descriptions, i.e., descriptions that identify mental states through their representational properties. Whether scientific psychology should likewise employ intentional descriptions is a contested issue within contemporary philosophy of mind.
在日常生活中,我们经常通过援引信念、欲望和其他具有代表性的心理状态来预测和解释行为。我们通过它们的表征属性来识别这些状态。当我们说“弗兰克认为埃马纽埃尔·马克龙是法国人”时,我们指定了弗兰克的信念为真的条件(即埃马纽埃尔·马克龙是法国人)。当我们说“Frank 想吃巧克力”时,我们指定了 Frank 的愿望得到满足的条件(即 Frank 吃巧克力)。因此,民俗心理学为意向性描述赋予了核心作用,即通过其表征特性来识别心理状态的描述。科学心理学是否也应该采用意向性描述,是当代心灵哲学中一个有争议的问题。
Intentional realism is realism regarding representation. At a minimum, this position holds that representational properties are genuine aspects of mentality. Usually, it is also taken to hold that scientific psychology should freely employ intentional descriptions when appropriate. Intentional realism is a popular position, advocated by Tyler Burge (2010a), Jerry Fodor (1987), Christopher Peacocke (1992, 1994), and many others. One prominent argument for intentional realism cites cognitive science practice. The argument maintains that intentional description figures centrally in many core areas of cognitive science, such as perceptual psychology and linguistics. For example, perceptual psychology describes how perceptual activity transforms sensory inputs (e.g., retinal stimulations) into representations of the distal environment (e.g., perceptual representations of distal shapes, sizes, and colors). The science identifies perceptual states by citing representational properties (e.g., representational relations to specific distal shapes, sizes, colors). Assuming a broadly scientific realist perspective, the explanatory achievements of perceptual psychology support a realist posture towards intentionality.
意向现实主义是关于表现的现实主义。至少,这一立场认为表征属性是心态的真正方面。通常,人们还认为科学心理学应该在适当的时候自由地使用有意的描述。意向现实主义是一个流行的立场,由 Tyler Burge(2010a)、Jerry Fodor(1987)、Christopher Peacocke(1992, 1994)和许多其他人倡导。意向现实主义的一个突出论点引用了认知科学实践。该论点认为,意向性描述在认知科学的许多核心领域中占据中心地位,例如知觉心理学和语言学。例如,知觉心理学描述了知觉活动如何将感觉输入(例如,视网膜刺激)转化为远端环境的表征(例如,远端形状、大小和颜色的感知表征)。该科学通过引用表征特性(例如,与特定远端形状、大小、颜色的表征关系)来识别知觉状态。假设从广义的科学现实主义观点出发,知觉心理学的解释性成就支持对意向性的现实主义姿态。
Eliminativism is a strong form of anti-realism about intentionality. Eliminativists dismiss intentional description as vague, context-sensitive, interest-relative, explanatorily superficial, or otherwise problematic. They recommend that scientific psychology jettison representational content. An early example is W.V. Quine’s Word and Object (1960), which seeks to replace intentional psychology with behaviorist stimulus-response psychology. Paul Churchland (1981), another prominent eliminativist, wants to replace intentional psychology with neuroscience.
消除主义是关于意向性的强烈反现实主义形式。排除论者认为有意的描述是模糊的、上下文敏感的、利益相关的、解释性的肤浅的或其他有问题的。他们建议科学心理学抛弃代表性内容。一个早期的例子是 W.V. Quine 的 Word and Object(1960),它试图用行为主义刺激反应心理学取代意向心理学。Paul Churchland(1981)是另一位著名的消除论者,他想用神经科学取代意向心理学。
Between intentional realism and eliminativism lie various intermediate positions. Daniel Dennett (1971, 1987) acknowledges that intentional discourse is predictively useful, but he questions whether mental states really have representational properties. According to Dennett, theorists who employ intentional descriptions are not literally asserting that mental states have representational properties. They are merely adopting the “intentional stance”. Donald Davidson (1980) espouses a neighboring interpretivist position. He emphasizes the central role that intentional ascription plays within ordinary interpretive practice, i.e., our practice of interpreting one another’s mental states and speech acts. At the same time, he questions whether intentional psychology will find a place within mature scientific theorizing. Davidson and Dennett both profess realism about intentional mental states. Nevertheless, both philosophers are customarily read as intentional anti-realists. (In particular, Dennett is frequently read as a kind of instrumentalist about intentionality.) One source of this customary reading involves indeterminacy of interpretation. Suppose that behavioral evidence allows two conflicting interpretations of a thinker’s mental states. Following Quine, Davidson and Dennett both say there is then “no fact of the matter” regarding which interpretation is correct. This diagnosis indicates a less than fully realist attitude towards intentionality.
在意向现实主义和消除主义之间存在着各种中间立场。丹尼尔·丹尼特(Daniel Dennett,1971,1987)承认有意的话语在预测上是有用的,但他质疑心理状态是否真的具有表征属性。根据丹尼特的说法,使用意向性描述的理论家并不是在字面上断言心理状态具有表征属性。他们只是采取了 “有意识的立场”。唐纳德·戴维森(Donald Davidson)(1980)支持邻近的解释主义立场。他强调了有意归属在普通解释实践中的核心作用,即我们解释彼此的精神状态和言语行为的实践。与此同时,他质疑意向心理学是否会在成熟的科学理论中找到一席之地。戴维森和丹尼特都宣称对有意识的心理状态的现实主义。然而,这两位哲学家通常被解读为有意的反现实主义者。(特别是,丹尼特经常被解读为一种关于意向性的工具论者。这种习惯性阅读的一个来源涉及解释的不确定性。假设行为证据允许对思考者的心理状态进行两种相互冲突的解释。在奎因之后,戴维森和丹尼特都表示,关于哪种解释是正确的,“没有事实”。这个诊断表明对意向性的态度并不完全现实。
Debates over intentionality figure prominently in philosophical discussion of CTM. Let us survey some highlights.
关于意向性的争论在 CTM 的哲学讨论中占有突出地位。让我们来看看一些亮点。
5.1 Computation as formal 5.1 形式计算
Classical computationalists typically assume what one might call the formal-syntactic conception of computation (FSC). The intuitive idea is that computation manipulates symbols in virtue of their formal syntactic properties rather than their semantic properties.
经典计算论者通常假设人们可能称之为计算的形式-句法概念(FSC)。直觉上的想法是,计算根据符号的形式语法属性而不是语义属性来操纵符号。
FSC stems from innovations in mathematical logic during the late 19th and early 20th centuries, especially seminal contributions by George Boole and Gottlob Frege. In his Begriffsschrift (1879/1967), Frege effected a thoroughgoing formalization of deductive reasoning. To formalize, we specify a formal language whose component linguistic expressions are individuated non-semantically (e.g., by their geometric shapes). We may have some intended interpretation in mind, but elements of the formal language are purely syntactic entities that we can discuss without invoking semantic properties such as reference or truth-conditions. In particular, we can specify inference rules in formal syntactic terms. If we choose our inference rules wisely, then they will cohere with our intended interpretation: they will carry true premises to true conclusions. Through formalization, Frege invested logic with unprecedented rigor. He thereby laid the groundwork for numerous subsequent mathematical and philosophical developments.
FSC 源于 19 世纪末和 20 世纪初数理逻辑的创新,尤其是 George Boole 和 Gottlob Frege 的开创性贡献。在他的 Begriffsschrift(1879/1967)中,弗雷格对演绎推理进行了彻底的形式化。为了形式化,我们指定了一种形式语言,其组成部分语言表达在非语义上是个性化的(例如,通过它们的几何形状)。我们可能有一些有意的解释,但形式语言的元素是纯粹的句法实体,我们可以在不援引引用或真值条件等语义属性的情况下进行讨论。特别是,我们可以用正式的句法术语来指定推理规则。如果我们明智地选择我们的推理规则,那么它们将与我们预期的解释相一致:它们将把真实的前提带到真实的结论中。通过形式化,Frege 以前所未有的严谨性投入了逻辑。因此,他为后来的许多数学和哲学发展奠定了基础。
Formalization plays a significant foundational role within computer science. We can program a Turing-style computer that manipulates linguistic expressions drawn from a formal language. If we program the computer wisely, then its syntactic machinations will cohere with our intended semantic interpretation. For example, we can program the computer so that it carries true premises only to true conclusions, or so that it updates probabilities as dictated by Bayesian decision theory.
形式化在计算机科学中起着重要的基础作用。我们可以对图灵式计算机进行编程,该计算机可以操纵从正式语言中提取的语言表达式。如果我们明智地对计算机进行编程,那么它的句法构想将与我们预期的语义解释相一致。例如,我们可以对计算机进行编程,使其仅将真实前提带到真实结论,或者按照贝叶斯决策理论的要求更新概率。
FSC holds that all computation manipulates formal syntactic items, without regard to any semantic properties those items may have. Precise formulations of FSC vary. Computation is said to be “sensitive” to syntax but not semantics, or to have “access” only to syntactic properties, or to operate “in virtue” of syntactic rather than semantic properties, or to be impacted by semantic properties only as “mediated” by syntactic properties. It is not always so clear what these formulations mean or whether they are equivalent to one another. But the intuitive picture is that syntactic properties have causal/explanatory primacy over semantic properties in driving computation forward.
FSC 认为,所有计算都操纵正式的句法项目,而不考虑这些项目可能具有的任何语义属性。FSC 的精确配方各不相同。计算被认为对语法“敏感”但对语义不敏感,或者只能“访问”句法属性,或者“凭借”句法属性而不是语义属性进行操作,或者仅作为句法属性的“中介”而受到语义属性的影响。这些表述的含义或它们是否彼此等效并不总是那么清楚。但直观的情况是,在推动计算向前发展方面,句法属性比语义属性具有因果/解释的优先地位。
Fodor’s article “Methodological Solipsism Considered as a Research Strategy in Cognitive Psychology” (1980) offers an early statement. Fodor combines FSC with CCTM+RTM. He analogizes Mentalese to formal languages studied by logicians: it contains simple and complex items individuated non-semantically, just as typical formal languages contain simple and complex expressions individuated by their shapes. Mentalese symbols have a semantic interpretation, but this interpretation does not (directly) impact mental computation. A symbol’s formal properties, rather than its semantic properties, determine how computation manipulates the symbol. In that sense, the mind is a “syntactic engine”. Virtually all classical computationalists follow Fodor in endorsing FSC.
Fodor 的文章“方法论唯我论被视为认知心理学中的一种研究策略”(1980 年)提供了一个早期的陈述。Fodor 将 FSC 与 CCTM+RTM 相结合。他将 Mentalese 比作逻辑学家研究的形式语言:它包含非语义上个性化的简单和复杂项目,就像典型的形式语言包含由其形状个性化的简单和复杂表达一样。Mentalese 符号具有语义解释,但这种解释不会(直接)影响心算。符号的形式属性(而不是其语义属性)决定了计算如何操作符号。从这个意义上说,心智是一个 “句法引擎”。几乎所有的古典计算论者都追随 Fodor 支持 FSC。
Connectionists often deny that neural networks manipulate syntactically structured items. For that reason, many connectionists would hesitate to accept FSC. Nevertheless, most connectionists endorse a generalized formality thesis: computation is insensitive to semantic properties. The generalized formality thesis raises many of the same philosophical issues raised by FSC. We focus here on FSC, which has received the most philosophical discussion.
连接论者经常否认神经网络操纵语法结构的项目。出于这个原因,许多联结主义者会犹豫是否接受 FSC。尽管如此,大多数联结论者都支持一个广义的形式论点:计算对语义属性不敏感。广义的形式论点提出了许多与 FSC 相同的哲学问题。我们在这里关注 FSC,它受到了最哲学的讨论。
Fodor combines CCTM+RTM+FSC with intentional realism. He holds that CCTM+RTM+FSC vindicates folk psychology by helping us convert common sense intentional discourse into rigorous science. He motivates his position with a famous abductive argument for CCTM+RTM+FSC (1987: 18–20). Strikingly, mental activity tracks semantic properties in a coherent way. For example, deductive inference carries premises to conclusions that are true if the premises are true. How can we explain this crucial aspect of mental activity? Formalization shows that syntactic manipulations can track semantic properties, and computer science shows how to build physical machines that execute desired syntactic manipulations. If we treat the mind as a syntax-driven machine, then we can explain why mental activity tracks semantic properties in a coherent way. Moreover, our explanation does not posit causal mechanisms radically different from those posited within the physical sciences. We thereby answer the pivotal question: How is rationality mechanically possible?
Fodor 将 CCTM+RTM+FSC 与有意的现实主义相结合。他认为 CCTM+RTM+FSC 帮助我们将常识性的意向性话语转化为严谨的科学,从而证明了民间心理学的正确性。他用 CCTM+RTM+FSC 的著名归纳论证(1987: 18-20)来激励他的立场。引人注目的是,心理活动以连贯的方式跟踪语义属性。例如,演绎推理将前提带到如果前提是真的,那么结论就是真的。我们如何解释心理活动的这个关键方面呢?形式化表明句法操作可以跟踪语义属性,计算机科学展示了如何构建执行所需句法操作的物理机器。如果我们把心智看作是句法驱动的机器,那么我们就可以解释为什么心理活动以连贯的方式跟踪语义属性。此外,我们的解释并没有假设与物理科学中假设的因果机制截然不同的因果机制。因此,我们回答了关键问题:理性是如何机械地实现的?
Stephen Stich (1983) and Hartry Field (2001) combine CCTM+FSC with eliminativism. They recommend that cognitive science model the mind in formal syntactic terms, eschewing intentionality altogether. They grant that mental states have representational properties, but they ask what explanatory value scientific psychology gains by invoking those properties. Why supplement formal syntactic description with intentional description? If the mind is a syntax-driven machine, then doesn’t representational content drop out as explanatorily irrelevant?
Stephen Stich(1983)和 Hartry Field(2001)将 CCTM+FSC 与消除主义相结合。他们建议认知科学以正式的句法术语对心智进行建模,完全避免意向性。他们承认心理状态具有表征属性,但他们质疑科学心理学通过援引这些属性获得了什么解释价值。为什么要用意向性描述来补充正式的句法描述?如果大脑是一台语法驱动的机器,那么表征内容难道不会因为解释性无关紧要而消失吗?
At one point in his career, Putnam (1983: 139–154) combined CCTM+FSC with a Davidson-tinged interpretivism. Cognitive science should proceed along the lines suggested by Stich and Field, delineating purely formal syntactic computational models. Formal syntactic modeling co-exists with ordinary interpretive practice, in which we ascribe intentional contents to one another’s mental states and speech acts. Interpretive practice is governed by holistic and heuristic constraints, which stymie attempts at converting intentional discourse into rigorous science. For Putnam, as for Field and Stich, the scientific action occurs at the formal syntactic level rather than the intentional level.
在他职业生涯的某个阶段,Putnam(1983: 139–154)将 CCTM+FSC 与带有戴维森色彩的解释主义相结合。认知科学应该按照 Stich 和 Field 的建议进行,描绘纯粹的形式句法计算模型。正式的句法建模与普通的解释实践共存,在普通的解释实践中,我们将有意的内容归因于彼此的心理状态和言语行为。解释实践受整体和启发式约束的约束,这阻碍了将有意的话语转化为严谨的科学的尝试。对普特南来说,就像对菲尔德和斯蒂奇一样,科学行动发生在形式句法层面,而不是意向层面。
CTM+FSC comes under attack from various directions. One criticism targets the causal relevance of representational content (Block 1990; Figdor 2009; Kazez 1995). Intuitively speaking, the contents of mental states are causally relevant to mental activity and behavior. For example, my desire to drink water rather than orange juice causes me to walk to the sink rather than the refrigerator. The content of my desire (that I drink water) seems to play an important causal role in shaping my behavior. According to Fodor (1990: 137–159), CCTM+RTM+FSC accommodates such intuitions. Formal syntactic activity implements intentional mental activity, thereby ensuring that intentional mental states causally interact in accord with their contents. However, it is not so clear that this analysis secures the causal relevance of content. FSC says that computation is “sensitive” to syntax but not semantics. Depending on how one glosses the key term “sensitive”, it can look like representational content is causally irrelevant, with formal syntax doing all the causal work. Here is an analogy to illustrate the worry. When a car drives along a road, there are stable patterns involving the car’s shadow. Nevertheless, shadow position at one time does not influence shadow position at a later time. Similarly, CCTM+RTM+FSC may explain how mental activity instantiates stable patterns described in intentional terms, but this is not enough to ensure the causal relevance of content. If the mind is a syntax-driven machine, then causal efficacy seems to reside at the syntactic rather the semantic level. Semantics is just “along for the ride”. Apparently, then, CTM+FSC encourages the conclusion that representational properties are causally inert. The conclusion may not trouble eliminativists, but intentional realists usually want to avoid it.
CTM+FSC 受到来自各个方向的攻击。一种批评针对表征内容的因果关系(Block 1990;Figdor 2009 年;Kazez 1995 年)。直觉上讲,心理状态的内容与心理活动和行为有因果关系。例如,我想喝水而不是喝橙汁,这导致我走到水槽而不是冰箱。我的欲望内容(我喝水)似乎在塑造我的行为中起着重要的因果作用。根据 Fodor(1990: 137–159)的说法,CCTM+RTM+FSC 容纳了这种直觉。正式的句法活动实现了意向性的心理活动,从而确保意向性的心理状态与其内容一致地因果互动。然而,这种分析是否确保了内容的因果相关性并不十分清楚。FSC 表示,计算对语法“敏感”,但对语义不敏感。根据人们如何修饰关键术语 “敏感” ,它可能看起来是表征性内容在因果关系上无关紧要的,正式的语法完成了所有的因果工作。这里有一个类比来说明这种担忧。当汽车沿道路行驶时,存在涉及汽车阴影的稳定模式。然而,一次的阴影位置不会影响以后的阴影位置。同样,CCTM+RTM+FSC 可以解释心理活动如何实例化以有意术语描述的稳定模式,但这不足以确保内容的因果相关性。如果大脑是句法驱动的机器,那么因果效能似乎存在于句法层面而不是语义层面。语义学只是 “顺风顺水”。显然,CTM+FSC 鼓励了表征属性是因果惰性的结论。这个结论可能不会困扰消除论者,但有意识的现实主义者通常想避免它。
A second criticism dismisses the formal-syntactic picture as speculation ungrounded in scientific practice. Tyler Burge (2010a,b, 2013: 479–480) contends that formal syntactic description of mental activity plays no significant role within large areas of cognitive science, including the study of theoretical reasoning, practical reasoning, and perception. In each case, Burge argues, the science employs intentional description rather than formal syntactic description. For example, perceptual psychology individuates perceptual states not through formal syntactic properties but through representational relations to distal shapes, sizes, colors, and so on. To understand this criticism, we must distinguish formal syntactic description and neurophysiological description. Everyone agrees that a complete scientific psychology will assign prime importance to neurophysiological description. However, neurophysiological description is distinct from formal syntactic description, because formal syntactic description is supposed to be multiply realizable in the neurophysiological. The issue here is whether scientific psychology should supplement intentional descriptions and neurophysiological descriptions with multiply realizable, non-intentional formal syntactic descriptions.
第二种批评将形式句法图景视为没有科学实践基础的猜测。泰勒·伯格(2010a,b, 2013: 479–480)认为,心理活动的正式句法描述在认知科学的大部分领域中没有发挥重要作用,包括理论推理、实践推理和感知的研究。伯格认为,在每种情况下,科学都采用有意的描述,而不是正式的句法描述。例如,知觉心理学不是通过正式的句法属性,而是通过与远端形状、大小、颜色等的表征关系来个性化知觉状态。要理解这种批评,我们必须区分正式的句法描述和神经生理学描述。每个人都同意,完整的科学心理学将把神经生理学描述放在首位。然而,神经生理学描述与正式的句法描述不同,因为正式的句法描述在神经生理学中应该是可以成倍实现的。这里的问题是,科学心理学是否应该用多重可实现的、非故意的正式句法描述来补充意向性描述和神经生理学描述。
5.2 Externalism about mental content 5.2 关于心理内容的外在论
Putnam’s landmark article “The Meaning of ‘Meaning’” (1975: 215–271) introduced the Twin Earth thought experiment, which postulates a world just like our own except that H2O is replaced by a qualitatively similar substance XYZ with different chemical composition. Putnam argues that XYZ is not water and that speakers on Twin Earth use the word “water” to refer to XYZ rather than to water. Burge (1982) extends this conclusion from linguistic reference to mental content. He argues that Twin Earthlings instantiate mental states with different contents. For example, if Oscar on Earth thinks that water is thirst-quenching, then his duplicate on Twin Earth thinks a thought with a different content, which we might gloss as that twater is thirst-quenching. Burge concludes that mental content does not supervene upon internal neurophysiology. Mental content is individuated partly by factors outside the thinker’s skin, including causal relations to the environment. This position is externalism about mental content.
普特南的里程碑式文章“'意义’的意义”(1975:215-271)介绍了双子地球思想实验,该实验假设了一个与我们自己的世界相似的世界,只是 H2O 被一种性质相似但化学成分不同的物质 XYZ 所取代。Putnam 认为 XYZ 不是水,Twin Earth 的使用者使用“水”一词来指代 XYZ 而不是水。Burge(1982)将这一结论从语言学参考扩展到心理内容。他认为,双胞胎地球人以不同的内容实例化心理状态。例如,如果地球上的奥斯卡认为水是解渴的,那么他在双子地球上的复制体会思考一个具有不同内容的想法,我们可以将其美化为水是解渴的。Burge 得出结论,心理内容并不依赖于内部神经生理学。心理内容部分由思考者皮肤以外的因素个性化,包括与环境的因果关系。这种立场是关于心理内容的外在主义。
Formal syntactic properties of mental states are widely taken to supervene upon internal neurophysiology. For example, Oscar and Twin Oscar instantiate the same formal syntactic manipulations. Assuming content externalism, it follows that there is a huge gulf between ordinary intentional description and formal syntactic description.
心理状态的形式句法特性被广泛认为是内部神经生理学的后盾。例如,Oscar 和 Twin Oscar 实例化相同的正式句法操作。假设内容外在主义,那么在普通的意向性描述和正式的句法描述之间存在着巨大的鸿沟。
Content externalism raises serious questions about the explanatory utility of representational content for scientific psychology:
内容外部主义对表征内容对科学心理学的解释效用提出了严重的问题:
Argument from Causation (Fodor 1987, 1991): How can mental content exert any causal influence except as manifested within internal neurophysiology? There is no “psychological action at a distance”. Differences in the physical environment impact behavior only by inducing differences in local brain states. So the only causally relevant factors are those that supervene upon internal neurophysiology. Externally individuated content is causally irrelevant.
来自因果关系的论证(Fodor 1987, 1991):除了在内部神经生理学中表现出来之外,心理内容如何施加任何因果影响?没有“远距离的心理作用”。物理环境的差异仅通过诱导局部大脑状态的差异来影响行为。因此,唯一因果相关的因素是那些影响内部神经生理学的因素。外部个性化的内容在因果关系上是无关紧要的。
Argument from Explanation (Stich 1983): Rigorous scientific explanation should not take into account factors outside the subject’s skin. Folk psychology may taxonomize mental states through relations to the external environment, but scientific psychology should taxonomize mental states entirely through factors that supervene upon internal neurophysiology. It should treat Oscar and Twin Oscar as psychological duplicates.[3]
解释的论点(Stich 1983):严格的科学解释不应考虑受试者皮肤之外的因素。民间心理学可以通过与外部环境的关系对心理状态进行分类,但科学心理学应该完全通过与内部神经生理学相关的因素对心理状态进行分类。它应该将 Oscar 和 Twin Oscar 视为心理复制品。[3]
Some authors pursue the two arguments in conjunction with one another. Both arguments reach the same conclusion: externally individuated mental content finds no legitimate place within causal explanations provided by scientific psychology. Stich (1983) argues along these lines to motivate his formal-syntactic eliminativism.
一些作者将这两个论点相互结合来追求。这两个论点都得出了相同的结论:外部个体化的心理内容在科学心理学提供的因果解释中没有合法的位置。Stich(1983)沿着这些思路进行论证,以激发他的形式-句法消除主义。
Many philosophers respond to such worries by promoting content internalism. Whereas content externalists favor wide content (content that does not supervene upon internal neurophysiology), content internalists favor narrow content (content that does so supervene). Narrow content is what remains of mental content when one factors out all external elements. At one point in his career, Fodor (1981, 1987) pursued internalism as a strategy for integrating intentional psychology with CCTM+RTM+FSC. While conceding that wide content should not figure in scientific psychology, he maintained that narrow content should play a central explanatory role.
许多哲学家通过推广内容内部主义来回应这种担忧。内容外部论者偏爱宽内容(不依赖于内部神经生理学的内容),而内容内部论者偏爱狭义内容(这样做的内容)。狭义内容是当一个人排除所有外部因素时心理内容所剩无几的东西。在他职业生涯的某个阶段,Fodor(1981, 1987)追求内在主义作为将意向心理学与 CCTM+RTM+FSC 相结合的策略。虽然他承认宽泛的内容不应该出现在科学心理学中,但他坚持认为狭义内容应该发挥核心解释作用。
Radical internalists insist that all content is narrow. A typical analysis holds that Oscar is thinking not about water but about some more general category of substance that subsumes XYZ, so that Oscar and Twin Oscar entertain mental states with the same contents. Tim Crane (1991) and Gabriel Segal (2000) endorse such an analysis. They hold that folk psychology always individuates propositional attitudes narrowly. A less radical internalism recommends that we recognize narrow content in addition to wide content. Folk psychology may sometimes individuate propositional attitudes widely, but we can also delineate a viable notion of narrow content that advances
important philosophical or scientific goals. Internalists have proposed various candidate notions of narrow content (Block 1986; Chalmers 2002; Cummins 1989; Fodor 1987; Lewis 1994; Loar 1988; Mendola 2008). See the entry narrow mental content for an overview of prominent candidates.
激进的内在主义者坚持所有内容都是狭隘的。一个典型的分析认为,奥斯卡考虑的不是水,而是某种更普遍的物质类别,它包含 XYZ,因此奥斯卡和双胞胎奥斯卡以相同的内容来娱乐精神状态。Tim Crane(1991)和 Gabriel Segal(2000)赞同这种分析。他们认为民间心理学总是狭隘地区分命题态度。不那么激进的内在主义建议我们除了承认宽内容之外,还要承认狭义的内容。民间心理学有时可能会广泛地将命题态度个体化,但我们也可以描绘出一个可行的狭义内容概念,以推进重要的哲学或科学目标。内部主义者提出了各种狭义内容的候选概念(Block 1986;Chalmers 2002 年;康明斯 1989 年;Fodor 1987;Lewis 1994 年;Loar 1988 年;Mendola 2008 年)。有关杰出候选人的概述,请参阅条目 Narrow mental content。
Externalists complain that existing theories of narrow content are sketchy, implausible, useless for psychological explanation, or otherwise objectionable (Burge 2007; Sawyer 2000; Stalnaker 1999). Externalists also question internalist arguments that scientific psychology requires narrow content:
外部论者抱怨现有的狭义内容理论是粗略的、不可信的、对心理学解释毫无用处,或者是令人反感的(Burge 2007;Sawyer 2000 年;Stalnaker 1999 年)。外部论者还质疑内部论点,即科学心理学需要狭隘的内容:
Argument from Causation: Externalists insist that wide content can be causally relevant. The details vary among externalists, and discussion often becomes intertwined with complex issues surrounding causation, counterfactuals, and the metaphysics of mind. See the entry mental causation for an introductory overview, and see Burge (2007), Rescorla (2014a), and Yablo (1997, 2003) for representative externalist discussion.
来自因果关系的论点:外部论者坚持认为广泛的内容可以是因果相关的。细节因外在论者而异,讨论经常与围绕因果关系、反事实和心灵形而上学的复杂问题交织在一起。有关介绍性概述,请参阅条目 心理因果关系,并参见 Burge(2007)、Rescorla(2014a)和 Yablo(1997, 2003)有关代表性的外部主义讨论。
Argument from Explanation: Externalists claim that psychological explanation can legitimately taxonomize mental states through factors that outstrip internal neurophysiology (Peacocke 1993; Shea, 2018). Burge observes that non-psychological sciences often individuate explanatory kinds relationally, i.e., through relations to external factors. For example, whether an entity counts as a heart depends (roughly) upon whether its biological function in its normal environment is to pump blood. So physiology individuates organ kinds relationally. Why can’t psychology likewise individuate mental states relationally? For a notable exchange on these issues, see Burge (1986, 1989, 1995) and Fodor (1987, 1991).
来自解释的论点:外部论者声称,心理学解释可以通过超越内部神经生理学的因素合法地对心理状态进行分类(Peacocke 1993;Shea,2018 年)。伯格观察到,非心理科学经常根据关系,即通过与外部因素的关系来区分解释类型。例如,一个实体是否算作心脏取决于(大致)它在正常环境中的生物功能是否是泵血。因此,生理学在关系上区分器官种类。为什么心理学同样不能在关系上个体化心理状态呢?关于这些问题的值得注意的交流,参见 Burge(1986, 1989, 1995)和 Fodor(1987, 1991)。
Externalists doubt that we have any good reason to replace or supplement wide content with narrow content. They dismiss the search for narrow content as a wild goose chase.
外部论者怀疑我们是否有任何充分的理由用狭义内容替换或补充宽内容。他们将搜索狭窄的内容视为一场疯狂的追逐。
Burge (2007, 2010a) defends externalism by analyzing current cognitive science. He argues that many branches of scientific psychology (especially perceptual psychology) individuate mental content through causal relations to the external environment. He concludes that scientific practice embodies an externalist perspective. By contrast, he maintains, narrow content is a philosophical fantasy ungrounded in current science.
Burge(2007, 2010a)通过分析当前的认知科学来捍卫外在主义。他认为,科学心理学的许多分支(尤其是知觉心理学)通过与外部环境的因果关系来个性化心理内容。他得出的结论是,科学实践体现了一种外在主义的观点。相比之下,他坚持认为,狭义内容是一种没有当前科学基础的哲学幻想。
Suppose we abandon the search for narrow content. What are the prospects for combining CTM+FSC with externalist intentional psychology? The most promising option emphasizes levels of explanation. We can say that intentional psychology occupies one level of explanation, while formal-syntactic computational psychology occupies a different level. Fodor advocates this approach in his later work (1994, 2008). He comes to reject narrow content as otiose. He suggests that formal syntactic mechanisms implement externalist psychological laws. Mental computation manipulates Mentalese expressions in accord with their formal syntactic properties, and these formal syntactic manipulations ensure that mental activity instantiates appropriate law-like patterns defined over wide contents.
假设我们放弃对狭窄内容的搜索。CTM+FSC 与外在主义意向心理学相结合的前景如何?最有前途的选项强调解释的层次。我们可以说意向心理学占据了一个解释层次,而形式句法计算心理学占据了另一个层次。Fodor 在他后来的工作(1994 年、2008 年)中倡导这种方法。他开始拒绝狭隘的内容,认为它是无聊的。他认为形式句法机制实现了外在主义心理学定律。心理计算根据其正式的句法属性操纵 Mentalese 表达式,这些正式的句法操作确保心理活动实例化在广泛内容上定义的适当规律式模式。
In light of the internalism/externalism distinction, let us revisit the eliminativist challenge raised in §5.1: what explanatory value does intentional description add to formal-syntactic description? Internalists can respond that suitable formal syntactic manipulations determine and maybe even constitute narrow contents, so that internalist intentional description is already implicit in suitable formal syntactic description (cf. Field 2001: 75). Perhaps this response vindicates intentional realism, perhaps not. Crucially, though, no such response is available to content externalists. Externalist intentional description is not implicit in formal syntactic description, because one can hold formal syntax fixed while varying wide content. Thus, content externalists who espouse CTM+FSC must say what we gain by supplementing formal-syntactic explanations with intentional explanations. Once we accept that mental computation is sensitive to syntax but not semantics, it is far from clear that any useful explanatory work remains for wide content. Fodor addresses this challenge at various points, offering his most systematic treatment in The Elm and the Expert (1994). See Arjo (1996), Aydede (1998), Aydede and Robbins (2001), Wakefield (2002); Perry (1998), and Wakefield (2002) for criticism. See Rupert (2008) and Schneider (2005) for positions close to Fodor’s. Dretske (1993) and Shea (2018, pp. 197–226) pursue alternative strategies for vindicating the explanatory relevance of wide content.
鉴于内在主义/外在主义的区别,让我们重新审视§5.1中提出的排除法挑战:意向性描述为形式-句法描述增加了什么解释价值?内在论者可以回答说,适当的形式句法操作决定甚至可能构成狭义的内容,因此内在主义的意向性描述已经隐含在适当的形式句法描述中(参见 Field 2001:75)。也许这种回应证明了有意的现实主义,也许不是。不过,至关重要的是,内容外部论者没有这样的回应。外部主义的意向性描述并不隐含在正式的句法描述中,因为人们可以在改变广泛的内容时保持正式语法固定。因此,支持 CTM+FSC 的内容外部论者必须通过用有意的解释补充形式句法解释来说明我们所获得的好处。一旦我们接受了心理计算对句法敏感,但对语义不敏感,那么对于广义内容,任何有用的解释工作都远不清楚。Fodor 在不同方面解决了这一挑战,在 The Elm and the Expert(1994)中提供了他最系统的处理。请参阅Arjo(1996)、Aydede(1998)、Aydede and Robbins(2001)、Wakefield(2002);Perry(1998)和 Wakefield(2002)的批评。参见 Rupert(2008)和 Schneider(2005)了解与 Fodor 接近的位置。Dretske(1993)和 Shea(2018, pp. 197-226)寻求替代策略来证明广泛内容的解释相关性。
5.3 Content-involving computation 5.3 涉及内容的计算
The perceived gulf between computational description and intentional description animates many writings on CTM. A few philosophers try to bridge the gulf using computational descriptions that individuate computational states in representational terms. These descriptions are content-involving, to use Christopher Peacocke’s (1994) terminology. On the content-involving approach, there is no rigid demarcation between computational and intentional description. In particular, certain scientifically valuable descriptions of mental activity are both computational and intentional. Call this position content-involving computationalism.
计算描述和意向描述之间的感知鸿沟激发了 CTM 上的许多著作。一些哲学家试图使用计算描述来弥合鸿沟,这些描述以表征术语来个性化计算状态。用 Christopher Peacocke(1994)的术语来说,这些描述是涉及内容的。在内容涉及的方法中,计算和意向描述之间没有严格的界限。特别是,某些具有科学价值的心理活动描述既是计算的,也是有意的。将此位置称为涉及内容的计算主义。
Content-involving computationalists need not say that all computational description is intentional. To illustrate, suppose we describe a simple Turing machine that manipulates symbols individuated by their geometric shapes. Then the resulting computational description is not plausibly content-involving. Accordingly, content-involving computationalists do not usually advance content-involving computation as a general theory of computation. They claim only that some important computational descriptions are content-involving.
涉及内容的计算论者不必说所有的计算描述都是有意为之的。为了说明这一点,假设我们描述一个简单的图灵机,它操纵由其几何形状组成的符号。那么,由此产生的计算描述就不合理地涉及内容。因此,涉及内容的计算论者通常不会将涉及内容的计算作为一般的计算理论来推进。他们只声称一些重要的计算描述是涉及内容的。
One can develop content-involving computationalism in an internalist or externalist direction. Internalist content-involving computationalists hold that some computational descriptions identify mental states partly through their narrow contents. Murat Aydede (2005) recommends a position along these lines. Externalist content-involving computationalism holds that certain computational descriptions identify mental states partly through their wide contents. Tyler Burge (2010a: 95–101), Christopher Peacocke (1994, 1999), Michael Rescorla (2012), and Mark Sprevak (2010) espouse this position. Oron Shagrir (2001, forthcoming) advocates a content-involving computationalism that is neutral between internalism and externalism.
人们可以在内部主义或外部主义的方向发展涉及内容的计算主义。涉及计算的内在主义内容论者认为,一些计算描述部分通过其狭隘的内容来识别心理状态。Murat Aydede(2005)建议采取以下立场。涉及计算主义的外在主义内容认为,某些计算描述部分通过其广泛的内容来识别心理状态。泰勒·伯格(2010a: 95–101)、克里斯托弗·皮科克(1994, 1999)、迈克尔·雷斯科拉(2012)和马克·斯普雷瓦克(2010)支持这一立场。Oron Shagrir(2001 年,即将出版)提倡一种在内部主义和外部主义之间保持中立的内容计算主义。
Externalist content-involving computationalists typically cite cognitive science practice as a motivating factor. For example, perceptual psychology describes the perceptual system as computing an estimate of some object’s size from retinal stimulations and from an estimate of the object’s depth. Perceptual “estimates” are identified representationally, as representations of specific distal sizes and depths. Quite plausibly, representational relations to specific distal sizes and depths do not supervene on internal neurophysiology. Quite plausibly, then, perceptual psychology type-identifies perceptual computations through wide contents. So externalist content-involving computationalism seems to harmonize well with current cognitive science.
涉及计算的外部主义内容论者通常将认知科学实践作为激励因素。例如,知觉心理学将知觉系统描述为根据视网膜刺激和对物体深度的估计来计算对某个物体大小的估计。知觉的 “估计 ”被表征为特定远端大小和深度的表征。很有可能,与特定远端大小和深度的表征关系并不依赖于内部神经生理学。因此,很有可能,知觉心理学通过广泛的内容对知觉计算进行类型识别。因此,涉及计算的外部主义内容似乎与当前的认知科学非常协调。
A major challenge facing content-involving computationalism concerns the interface with standard computationalism formalisms, such as the Turing machine. How exactly do content-involving descriptions relate to the computational models found in logic and computer science? Philosophers usually assume that these models offer non-intentional descriptions. If so, that would be a major and perhaps decisive blow to content-involving computationalism.
涉及内容的计算主义面临的一个主要挑战是与标准计算主义形式主义(如图灵机)的接口。涉及内容的描述与逻辑和计算机科学中的计算模型究竟有什么关系?哲学家通常假设这些模型提供了非故意的描述。如果是这样,那将是对涉及内容的计算主义的重大打击,也许是决定性的打击。
Arguably, though, many familiar computational formalisms allow a content-involving rather than formal syntactic construal. To illustrate, consider the Turing machine. One can individuate the “symbols” comprising the Turing machine alphabet non-semantically, through factors akin to geometric shape. But does Turing’s formalism require a non-semantic individuative scheme? Arguably, the formalism allows us to individuate symbols partly through their contents. Of course, the machine table for a Turing machine does not explicitly cite semantic properties of symbols (e.g., denotations or truth-conditions). Nevertheless, the machine table can encode mechanical rules that describe how to manipulate symbols, where those symbols are type-identified in content-involving terms. In this way, the machine table dictates transitions among content-involving states without explicitly mentioning semantic properties. Aydede (2005) suggests an internalist version of this view, with symbols type-identified through their narrow contents.[4] Rescorla (2017a) develops the view in an externalist direction, with symbols type-identified through their wide contents. He argues that some Turing-style models describe computational operations over externalistically individuated Mentalese symbols.[5]
不过,可以说,许多熟悉的计算形式允许涉及内容而不是正式的句法解释。为了说明这一点,请考虑图灵机。人们可以通过类似于几何形状的因素,以非语义方式个性化构成图灵机字母表的“符号”。但是图灵的形式主义需要一个非语义的个体化方案吗?可以说,形式主义允许我们部分地通过其内容来个性化符号。当然,图灵机的 machine 表并没有明确引用符号的语义属性(例如,表示或真值条件)。尽管如此,machine table 可以编码描述如何操作符号的机械规则,其中这些符号在涉及内容的术语中进行类型标识。通过这种方式,machine 表规定了涉及内容的状态之间的转换,而无需明确提及语义属性。Aydede(2005)提出了这种观点的内在主义版本,符号通过其狭窄的内容进行类型识别。[4] Rescorla(2017a)将这一观点发展到外部主义的方向,通过其广泛的内容对符号进行类型识别。他认为,一些图灵式模型描述了外部个性化 Mentalese 符号上的计算操作。[5]
In principle, one might embrace both externalist content-involving computational description and formal syntactic description. One might say that these two kinds of description occupy distinct levels of explanation. Peacocke suggests such a view. Other content-involving computationalists regard formal syntactic descriptions of the mind more skeptically. For example, Burge questions what explanatory value formal syntactic description contributes to certain areas of scientific psychology (such as perceptual psychology). From this viewpoint, the eliminativist challenge posed in §5.1 has matters backwards. We should not assume that formal syntactic descriptions are explanatorily valuable and then ask what value intentional descriptions contribute. We should instead embrace the externalist intentional descriptions offered by current cognitive science and then ask what value formal syntactic description contributes.
原则上,人们可以同时接受涉及计算描述的外部内容和正式的句法描述。有人可能会说,这两种描述占据了不同的解释层次。Peacocke 提出了这样的观点。其他涉及内容的计算论者对心智的正式句法描述持怀疑态度。例如,Burge 质疑正式句法描述对科学心理学的某些领域(例如知觉心理学)有什么解释价值。从这个角度来看,§5.1 中提出的排除法挑战是倒过来的。我们不应该假设正式的句法描述在解释上是有价值的,然后问有意的描述有什么价值。相反,我们应该接受当前认知科学提供的外在主义意向性描述,然后问问正式的句法描述有什么价值。
Proponents of formal syntactic description respond by citing implementation mechanisms. Externalist description of mental activity presupposes that suitable causal-historical relations between the mind and the external physical environment are in place. But surely we want a “local” description that ignores external causal-historical relations, a description that reveals underlying causal mechanisms. Fodor (1987, 1994) argues in this way to motivate the formal syntactic picture. For possible externalist responses to the argument from implementation mechanisms, see Burge (2010b), Rescorla (2017b), Shea (2013), and Sprevak (2010). Debate over this argument, and more generally over the relation between computation and representation, seems likely to continue into the indefinite future.
正式句法描述的支持者通过引用实现机制来回应。心理活动的外在主义描述以心智和外部物理环境之间存在适当的因果-历史关系为前提。但肯定的是,我们想要一个忽略外部因果-历史关系的 “局部 ”描述,一个揭示潜在因果机制的描述。Fodor(1987, 1994)以这种方式论证了形式句法图景的动机。有关实施机制对论点的可能外部主义回应,请参见 Burge(2010b)、Rescorla(2017b)、Shea(2013)和 Sprevak(2010)。关于这一论点的争论,以及更普遍的关于计算和表示之间关系的争论,似乎可能会无限期地持续到未来。
6. Alternative conceptions of computation 6. 计算的替代概念
The literature offers several alternative conceptions, usually advanced as foundations for CTM. In many cases, these conceptions overlap with one another or with the conceptions considered above.
文献提供了几种替代概念,通常作为 CTM 的基础。在许多情况下,这些概念彼此重叠或与上述概念重叠。
6.1 Information-processing 6.1 信息处理
It is common for cognitive scientists to describe computation as “information-processing”. It is less common for proponents to clarify what they mean by “information” or “processing”. Lacking clarification, the description is little more than an empty slogan.
认知科学家通常将计算描述为 “信息处理”。支持者澄清他们所说的“信息”或“处理”的含义并不常见。由于缺乏澄清,该描述只不过是一个空洞的口号。
Claude Shannon introduced a scientifically important notion of “information” in his 1948 article “A Mathematical Theory of Communication”. The intuitive idea is that information measures reduction in uncertainty, where reduced uncertainty manifests as an altered probability distribution over possible states. Shannon codified this idea within a rigorous mathematical framework, laying the foundation for information theory (Cover and Thomas 2006). Shannon information is fundamental to modern engineering. It finds fruitful application within cognitive science, especially cognitive neuroscience. Does it support a convincing analysis of computation as “information-processing”? Consider an old-fashioned tape machine that records messages received over a wireless radio. Using Shannon’s framework, one can measure how much information is carried by some recorded message. There is a sense in which the tape machine “processes” Shannon information whenever we replay a recorded message. Still, the machine does not seem to implement a non-trivial computational model.[6] Certainly, neither the Turing machine formalism nor the neural network formalism offers much insight into the machine’s operations. Arguably, then, a system can process Shannon information without executing computations in any interesting sense.
克劳德·香农(Claude Shannon)在他 1948 年的文章《通信的数学理论》中引入了一个具有科学意义的“信息”概念。直觉上的想法是,信息衡量不确定性的减少,其中不确定性的减少表现为可能状态的概率分布发生变化。Shannon 将这一想法编纂在一个严格的数学框架中,为信息论奠定了基础(Cover 和 Thomas 2006)。香农信息是现代工程的基础。它在认知科学,尤其是认知神经科学中得到了富有成效的应用。它是否支持将计算作为“信息处理”的令人信服的分析?考虑一台老式的磁带机,它记录通过无线电接收的消息。使用 Shannon 的框架,可以测量某些录制的信息携带了多少信息。从某种意义上说,每当我们重播录制的消息时,磁带机都会“处理”Shannon 信息。尽管如此,这台机器似乎并没有实现一个非平凡的计算模型。[6]当然,图灵机形式主义和神经网络形式主义都没有提供对机器操作的太多见解。因此,可以说,系统可以处理香农信息,而无需执行任何有趣意义上的计算。
Confronted with such examples, one might try to isolate a more demanding notion of “processing”, so that the tape machine does not “process” Shannon information. Alternatively, one might insist that the tape machine executes non-trivial computations. Piccinini and Scarantino (2010) advance a highly general notion of computation—which they dub generic computation—with that consequence.
面对这样的例子,人们可能会尝试分离出一个更苛刻的 “processing” 概念,这样磁带机就不会 “处理” Shannon 信息。或者,人们可能会坚持要求磁带机执行重要的计算。Piccinini 和 Scarantino(2010)提出了一个高度通用的计算概念,他们称之为通用计算,并产生了这种结果。
A second prominent notion of information derives from Paul Grice’s (1989) influential discussion of natural meaning. Natural meaning involves reliable, counterfactual-supporting correlations. For example, tree rings correlate with the age of the tree, and pox correlate with chickenpox. We colloquially describe tree rings as carrying information about tree age, pox as carrying information about chickenpox, and so on. Such descriptions suggest a conception that ties information to reliable, counterfactual-supporting correlations. Fred Dretske (1981) develops this conception into a systematic theory, as do various subsequent philosophers. Does Dretske-style information subserve a plausible analysis of computation as “information-processing”? Consider an old-fashioned bimetallic strip thermostat. Two metals are joined together into a strip. Differential expansion of the metals causes the strip to bend, thereby activating or deactivating a heating unit. Strip state reliably correlates with current ambient temperature, and the thermostat “processes” this information-bearing state when activating or deactivating the heater. Yet the thermostat does not seem to implement any non-trivial computational model. One would not ordinarily regard the thermostat as computing. Arguably, then, a system can process Dretske-style information without executing computations in any interesting sense. Of course, one might try to handle such examples through maneuvers parallel to those from the previous paragraph.
第二个突出的信息概念来自 Paul Grice(1989)对自然意义的有影响力的讨论。自然意义涉及可靠的、反事实支持的相关性。例如,树木年轮与树龄相关,痘与水痘相关。我们通俗地将树木年轮描述为携带有关树龄的信息,将 pox 描述为携带有关水痘的信息,依此类推。这样的描述暗示了一种将信息与可靠的、反事实支持的相关性联系起来的概念。Fred Dretske(1981)将这个概念发展成一个系统理论,后来的各种哲学家也是如此。Dretske 式的信息是否支持将计算作为“信息处理”的合理分析?考虑一个老式的双金属条恒温器。两种金属连接在一起形成一条。金属的差异膨胀导致带材弯曲,从而激活或停用加热装置。条状状态与当前环境温度可靠相关,恒温器在激活或停用加热器时“处理”这种承载信息的状态。然而,恒温器似乎并没有实现任何非平凡的计算模型。人们通常不会将恒温器视为计算。因此,可以说,系统可以处理 Dretske 式的信息,而无需执行任何有趣意义上的计算。当然,人们可能会尝试通过与上一段平行的动作来处理此类示例。
A third prominent notion of information is semantic information, i.e., representational content.[7] Some philosophers hold that a physical system computes only if the system’s states have representational properties (Dietrich 1989; Fodor 1998: 10; Ladyman 2009; Shagrir 2006; Sprevak 2010). In that sense, information-processing is necessary for computation. As Fodor memorably puts it, “no computation without representation” (1975: 34). However, this position is debatable. Chalmers (2011) and Piccinini (2008a) contend that a Turing machine might execute computations even though symbols manipulated by the machine have no semantic interpretation. The machine’s computations are purely syntactic in nature, lacking anything like semantic properties. On this view, representational content is not necessary for a physical system to count as computational.
第三个突出的信息概念是语义信息,即表征内容。[7] 一些哲学家认为,只有当系统的状态具有表征属性时,物理系统才会进行计算(Dietrich 1989;福多尔 1998:10;Ladyman 2009 年;沙格里尔 2006 年;Sprevak 2010 年)。从这个意义上说,信息处理是计算所必需的。正如 Fodor 令人难忘的所说,“没有表示就没有计算”(1975:34)。然而,这一立场是值得商榷的。Chalmers(2011)和 Piccinini(2008a)认为,即使图灵机操纵的符号没有语义解释,图灵机也可以执行计算。机器的计算本质上是纯粹的句法,缺乏语义属性之类的东西。根据这种观点,物理系统不需要表征内容才能算作计算内容。
It remains unclear whether the slogan “computation is information-processing” provides much insight. Nevertheless, the slogan seems unlikely to disappear from the literature anytime soon. For further discussion of possible connections between computation and information, see Gallistel and King (2009: 1–26), Lizier, Flecker, and Williams (2013), Milkowski (2013), Piccinini and Scarantino (2010), and Sprevak (forthcoming).
目前尚不清楚“计算就是信息处理”的口号是否提供了太多见解。尽管如此,这个口号似乎不太可能很快从文献中消失。有关计算和信息之间可能联系的进一步讨论,请参见 Gallistel 和 King(2009: 1–26)、Lizier、Flecker 和 Williams(2013)、Milkowski(2013)、Piccinini 和 Scarantino(2010)以及 Sprevak(即将出版)。
6.2 Function evaluation 6.2 功能评估
In a widely cited passage, the perceptual psychologist David Marr (1982) distinguishes three levels at which one can describe an “information-processing device”:
在一段被广泛引用的段落中,知觉心理学家 David Marr(1982)区分了三个可以描述“信息处理设备”的层次:
Computational theory: “[t]he device is characterized as a mapping from one kind of information to another, the abstract properties of this mapping are defined precisely, and its appropriateness and adequacy for the task as hand are demonstrated” (p. 24).
计算理论:“该设备的特点是从一种信息到另一种信息的映射,这种映射的抽象属性被精确定义,并证明了它对手部任务的适当性和充分性”(第 24 页)。
Representation and algorithm: “the choice of representation for the input and output and the algorithm to be used to transform one into the other” (pp. 24–25).
表示和算法: “输入和输出的表示选择以及用于将一个转换为另一个的算法”(第 24-25 页)。
Hardware implementation: “the details of how the algorithm and representation are realized physically” (p. 25).
硬件实现:“算法和表示如何以物理方式实现的细节”(第 25 页)。
Marr’s three levels have attracted intense philosophical scrutiny. For our purposes, the key point is that Marr’s “computational level” describes a mapping from inputs to outputs, without describing intermediate steps. Marr illustrates his approach by providing “computational level” theories of various perceptual processes, such as edge detection.
马尔的三个层次引起了严格的哲学审视。就我们的目的而言,关键点是 Marr 的 “计算级别” 描述了从输入到输出的映射,而没有描述中间步骤。Marr 通过提供各种感知过程(例如边缘检测)的“计算级”理论来说明他的方法。
Marr’s discussion suggests a functional conception of computation, on which computation is a matter of transforming inputs into appropriate outputs. Frances Egan elaborates the functional conception over a series of articles (1991, 1992, 1999, 2003, 2010, 2014, 2019). Like Marr, she treats computational description as description of input-output relations. She also claims that computational models characterize a purely mathematical function: that is, a mapping from mathematical inputs to mathematical outputs. She illustrates by considering a visual mechanism (called “Visua”) that computes an object’s depth from retinal disparity. She imagines a neurophysiological duplicate (“Twin Visua”) embedded so differently in the physical environment that it does not represent depth. Visua and Twin Visua instantiate perceptual states with different representational properties. Nevertheless, Egan says, vision science treats Visua and Twin Visua as computational duplicates. Visua and Twin Visua compute the same mathematical function, even though the computations have different representational import in the two cases. Egan concludes that computational modeling of the mind yields an “abstract mathematical description” consistent with many alternative possible representational descriptions. Intentional attribution is just a heuristic gloss upon underlying computational description.
Marr 的讨论提出了一个计算的函数概念,其中计算是将输入转换为适当输出的问题。Frances Egan 在一系列文章(1991、1992、1999、2003、2010、2014、2019)中详细阐述了功能概念。与 Marr 一样,她将计算描述视为对输入-输出关系的描述。她还声称,计算模型表征了一个纯粹的数学函数:即从数学输入到数学输出的映射。她通过考虑一种视觉机制(称为“Visua”)来说明,该机制根据视网膜视差计算物体的深度。她想象了一个神经生理学复制品(“Twin Visua”)嵌入物理环境中,这种复制品与物理环境中的差异如此之大,以至于它并不代表深度。Visua 和 Twin Visua 实例化具有不同表征特性的感知状态。尽管如此,Egan 说,视觉科学将 Visua 和 Twin Visua 视为计算复制品。Visua 和 Twin Visua 计算相同的数学函数,尽管在这两种情况下计算具有不同的表示意义。Egan 总结说,心智的计算建模产生了与许多其他可能的表征描述一致的“抽象数学描述”。有意归因只是对底层计算描述的启发式修饰。
Chalmers (2012) argues that the functional conception neglects important features of computation. As he notes, computational models usually describe more than just input-output relations. They describe intermediate steps through which inputs are transformed into outputs. These intermediate steps, which Marr consigns to the “algorithmic” level, figure prominently in computational models offered by logicians and computer scientists. Restricting the term “computation” to input-output description does not capture standard computational practice.
Chalmers(2012)认为,函数概念忽视了计算的重要特征。正如他所指出的,计算模型通常描述的不仅仅是输入-输出关系。它们描述了将输入转换为输出的中间步骤。Marr 将这些中间步骤归入“算法”级别,在逻辑学家和计算机科学家提供的计算模型中占有突出地位。将术语 “computation” 限制为 input-output description 并不能捕获标准的计算实践。
An additional worry faces functional theories, such as Egan’s, that exclusively emphasize mathematical inputs and outputs. Critics complain that Egan mistakenly elevates mathematical functions, at the expense of intentional explanations routinely offered by cognitive science (Burge 2005; Rescorla 2015; Silverberg 2006; Sprevak 2010). To illustrate, suppose perceptual psychology describes the perceptual system as estimating that some object’s depth is 5 meters. The perceptual depth-estimate has a representational content: it is accurate only if the object’s depth is 5 meters. We cite the number 5 to identify the depth-estimate. But our choice of this number depends upon our arbitrary choice of measurement units. Critics contend that the content of the depth-estimate, not the arbitrarily chosen number through which we theorists specify that content, is what matters for psychological explanation. Egan’s theory places the number rather than the content at explanatory center stage. According to Egan, computational explanation should describe the visual system as computing a particular mathematical function that carries particular mathematical inputs into particular mathematical outputs. Those particular mathematical inputs and outputs depend upon our arbitrary choice of measurement units, so they arguably lack the explanatory significance that Egan assigns to them.
另一个担忧是函数理论面临的,例如 Egan 的理论,它们只强调数学输入和输出。批评者抱怨 Egan 错误地提升了数学函数,而牺牲了认知科学经常提供的有意解释(Burge 2005;Rescorla 2015 年;Silverberg 2006 年;Sprevak 2010 年)。为了说明这一点,假设知觉心理学将知觉系统描述为估计某个物体的深度为 5 米。感知深度估计具有表征内容:只有当物体的深度为 5 米时,它才是准确的。我们引用数字 5 来识别深度估计。但是我们对这个数字的选择取决于我们对测量单位的任意选择。批评者认为,深度估计的内容,而不是我们理论家用来指定该内容的武断选择的数字,才是心理学解释的重要内容。Egan 的理论将数字而不是内容置于解释的中心位置。根据 Egan 的说法,计算解释应该将视觉系统描述为计算一个特定的数学函数,该函数将特定的数学输入转换为特定的数学输出。这些特定的数学输入和输出取决于我们任意选择的测量单位,因此它们可以说缺乏 Egan 赋予它们的解释意义。
We should distinguish the functional approach, as pursued by Marr and Egan, from the functional programming paradigm in computer science. The functional programming paradigm models evaluation of a complex function as successive evaluation of simpler functions. To take a simple example, one might evaluate f(x,y)=(x2+y)
by first evaluating the squaring function and then evaluating the addition function. Functional programming differs from the “computational level” descriptions emphasized by Marr, because it specifies intermediate computational stages. The functional programming paradigm stretches back to Alonzo Church’s (1936) lambda calculus, continuing with programming languages such as PCF and LISP. It plays an important role in AI and theoretical computer science. Some authors suggest that it offers special insight into mental computation (Klein 2012; Piantadosi, Tenenbaum, and Goodman 2012). However, many computational formalisms do not conform to the functional paradigm: Turing machines; imperative programming languages, such as C; logic programming languages, such as Prolog; and so on. Even though the functional paradigm describes numerous important computations (possibly including mental computations), it does not plausibly capture computation in general.
我们应该将 Marr 和 Egan 所追求的函数式方法与计算机科学中的函数式编程范式区分开来。函数式编程范例将复杂函数的评估建模为简单函数的连续评估。举个简单的例子,人们可能会评估 f(x,y)=( x 2 +y)f(x,y)=(x2+y)首先计算平方函数,然后计算加法函数。函数式编程与 Marr 强调的 “计算级别” 描述不同,因为它指定了中间计算阶段。函数式编程范式可以追溯到 Alonzo Church(1936)的 lambda 演算,并继续发展到 PCF 和 LISP 等编程语言。它在 AI 和理论计算机科学中发挥着重要作用。一些作者认为它为心理计算提供了特殊的见解(Klein 2012;Piantadosi、Tenenbaum 和 Goodman 2012 年)。然而,许多计算形式并不符合函数范式:图灵机;命令式编程语言,例如 C;逻辑编程语言,例如 Prolog;等等。尽管函数范式描述了许多重要的计算(可能包括心理计算),但它并没有合理地捕捉一般的计算。
6.3 Structuralism 6.3 结构主义
Many philosophical discussions embody a structuralist conception of computation: a computational model describes an abstract causal structure, without taking into account particular physical states that instantiate the structure. This conception traces back at least to Putnam’s original treatment (1967). Chalmers (1995, 1996a, 2011, 2012) develops it in detail. He introduces the combinatorial-state automaton (CSA) formalism, which subsumes most familiar models of computation (including Turing machines and neural networks). A CSA provides an abstract description of a physical system’s causal topology: the pattern of causal interaction among the system’s parts, independent of the nature of those parts or the causal mechanisms through which they interact. Computational description specifies a causal topology.
许多哲学讨论体现了结构主义的计算概念:计算模型描述了抽象的因果结构,而没有考虑实例化结构的特定物理状态。这个概念至少可以追溯到 Putnam 的原始处理(1967 年)。Chalmers(1995, 1996a, 2011, 2012)详细地发展了它。他引入了组合状态自动机(CSA)形式主义,该形式包含了最熟悉的计算模型(包括图灵机和神经网络)。CSA 提供了物理系统因果拓扑的抽象描述:系统各部分之间的因果交互模式,独立于这些部分的性质或它们相互作用的因果机制。Computational description 指定因果拓扑。
Chalmers deploys structuralism to delineate a very general version of CTM. He assumes the functionalist view that psychological states are individuated by their roles in a pattern of causal organization. Psychological description specifies causal roles, abstracted away from physical states that realize those roles. So psychological properties are organizationally invariant, in that they supervene upon causal topology. Since computational description characterizes a causal topology, satisfying a suitable computational description suffices for instantiating appropriate mental properties. It also follows that psychological description is a species of computational description, so that computational description should play a central role within psychological explanation. Thus, structuralist computation provides a solid foundation for cognitive science. Mentality is grounded in causal patterns, which are precisely what computational models articulate.
Chalmers 采用结构主义来描述 CTM 的一个非常通用的版本。他假设功能主义观点,即心理状态是由它们在因果组织模式中的角色而个体化的。心理学描述指定了因果角色,从实现这些角色的物理状态中抽象出来。因此,心理属性在组织上是不变的,因为它们依赖于因果拓扑。由于计算描述表征了因果拓扑,因此满足适当的计算描述就足以实例化适当的心理属性。这也表明,心理描述是计算描述的一种,因此计算描述应该在心理学解释中发挥核心作用。因此,结构主义计算为认知科学提供了坚实的基础。心态以因果模式为基础,而这正是计算模型所阐明的。
Structuralism comes packaged with an attractive account of the implementation relation between abstract computational models and physical systems. Under what conditions does a physical system implement a computational model? Structuralists say that a physical system implements a model just in case the model’s causal structure is “isomorphic” to the model’s formal structure. A computational model describes a physical system by articulating a formal structure that mirrors some relevant causal topology. Chalmers elaborates this intuitive idea, providing detailed necessary and sufficient conditions for physical realization of CSAs. Few if any alternative conceptions of computation can provide so substantive an account of the implementation relation.
结构主义包装了对抽象计算模型和物理系统之间实现关系的有吸引力的解释。物理系统在什么条件下实现计算模型?结构论者说,物理系统实现一个模型,只是为了以防模型的因果结构与模型的形式结构“同构”。计算模型通过阐明反映某些相关因果拓扑的正式结构来描述物理系统。Chalmers 详细阐述了这个直观的想法,为 CSA 的物理实现提供了详细的必要和充分条件。很少有其他计算概念可以提供如此实质性的实现关系说明。
We may instructively compare structuralist computationalism with some other theories discussed above:
我们可以将结构主义计算主义与上面讨论的其他一些理论进行指导性比较:
Machine functionalism. Structuralist computationalism embraces the core idea behind machine functionalism: mental states are functional states describable through a suitable computational formalism. Putnam advances CTM as an empirical hypothesis, and he defends functionalism on that basis. In contrast, Chalmers follows David Lewis (1972) by grounding functionalism in the conceptual analysis of mentalistic discourse. Whereas Putnam defends functionalism by defending computationalism, Chalmers defends computationalism by assuming functionalism.
机器功能主义。结构主义计算主义包含机器功能主义背后的核心思想:心理状态是可以通过适当的计算形式主义来描述的功能状态。Putnam 将 CTM 作为一个实证假设提出,并在此基础上为功能主义辩护。相比之下,查尔默斯追随大卫·刘易斯(David Lewis)(1972)的脚步,将功能主义建立在对心智话语的概念分析中。普特南通过捍卫计算主义来捍卫功能主义,而查尔默斯通过假设功能主义来捍卫计算主义。
Classical computationalism, connectionism, and computational neuroscience. Structuralist computationalism emphasizes organizationally invariant descriptions, which are multiply realizable. In that respect, it diverges from computational neuroscience. Structuralism is compatible with both classical and connectionist computationalism, but it differs in spirit from those views. Classicists and connectionists present their rival positions as bold, substantive hypotheses. Chalmers advances structuralist computationalism as a relatively minimalist position unlikely to be disconfirmed.
经典计算主义、连接主义和计算神经科学。结构主义计算主义强调组织上不变的描述,这些描述是可以成倍实现的。在这方面,它与计算神经科学不同。结构主义与古典计算主义和联结主义计算主义都是兼容的,但它在精神上与这些观点不同。古典主义者和联结主义者将他们的对立立场呈现为大胆的实质性假设。查尔默斯将结构主义计算主义作为一种相对最小主义的立场,不太可能被否定。
Intentional realism and eliminativism. Structuralist computationalism is compatible with both positions. CSA description does not explicitly mention semantic properties such as reference, truth-conditions, representational content, and so on. Structuralist computationalists need not assign representational content any important role within scientific psychology. On the other hand, structuralist computationalism does not preclude an important role for representational content.
有意的现实主义和消除主义。结构主义计算主义与这两种立场是兼容的。CSA 描述未明确提及语义属性,例如引用、真值条件、表述内容等。结构主义计算论者不需要在科学心理学中赋予表征内容任何重要角色。另一方面,结构主义计算主义并不排除表征内容的重要作用。
The formal-syntactic conception of computation. Wide content depends on causal-historical relations to the external environment, relations that outstrip causal topology. Thus, CSA description leaves wide content underdetermined. Narrow content presumably supervenes upon causal topology, but CSA description does not explicitly mention narrow contents. Overall, then, structuralist computationalism prioritizes a level of formal, non-semantic computational description. In that respect, it resembles FSC. On the other hand, structuralist computationalists need not say that computation is “insensitive” to semantic properties, so they need not endorse all aspects of FSC.
计算的形式句法概念。广泛的内容取决于与外部环境的因果历史关系,这些关系超越了因果拓扑。因此,CSA 描述使宽内容没有得到充分确定。狭义内容可能取代因果拓扑,但 CSA 描述并未明确提及狭义内容。因此,总的来说,结构主义计算主义优先考虑一定程度的正式的、非语义的计算描述。在这方面,它类似于 FSC。另一方面,结构主义计算论者不需要说计算对语义属性“不敏感”,因此他们不需要认可 FSC 的所有方面。
Although structuralist computationalism is distinct from CTM+FSC, it raises some similar issues. For example, Rescorla (2012) denies that causal topology plays the central explanatory role within cognitive science that structuralist computationalism dictates. He suggests that externalist intentional description rather than organizationally invariant description enjoys explanatory primacy. Coming from a different direction, computational neuroscientists will recommend that we forego organizationally invariant descriptions and instead employ more neurally specific computational models. In response to such objections, Chalmers (2012) argues that organizationally invariant computational description yields explanatory benefits that neither intentional description nor neurophysiological description replicate: it reveals the underlying mechanisms of cognition (unlike intentional description); and it abstracts away from neural implementation details that are irrelevant for many explanatory purposes.
尽管结构主义计算主义与 CTM+FSC 不同,但它提出了一些类似的问题。例如,Rescorla(2012)否认因果拓扑在结构主义计算主义所要求的认知科学中起着核心解释作用。他认为,外在主义的意向性描述,而不是组织上不变的描述,具有解释性的首要地位。来自不同方向的计算神经科学家会建议我们放弃组织上不变的描述,而是采用更特定于神经的计算模型。针对此类反对意见,Chalmers(2012)认为,组织上不变的计算描述产生了有意描述和神经生理学描述都无法复制的解释性好处:它揭示了认知的潜在机制(与有意描述不同);它从与许多解释目的无关的神经实现细节中抽象出来。
6.4 Mechanistic theories 6.4 机械论
The mechanistic nature of computation is a recurring theme in logic, philosophy, and cognitive science. Gualtiero Piccinini (2007, 2012, 2015) and Marcin Milkowski (2013) develop this theme into a mechanistic theory of computing systems. A functional mechanism is a system of interconnected components, where each component performs some function within the overall system. Mechanistic explanation proceeds by decomposing the system into parts, describing how the parts are organized into the larger system, and isolating the function performed by each part. A computing system is a functional mechanism of a particular kind. On Piccinini’s account, a computing system is a mechanism whose components are functionally organized to process vehicles in accord with rules. Echoing Putnam’s discussion of multiple realizability, Piccinini demands that the rules be medium-independent, in that they abstract away from the specific physical implementations of the vehicles. Computational explanation decomposes the system into parts and describes how each part helps the system process the relevant vehicles. If the system processes discretely structured vehicles, then the computation is digital. If the system processes continuous vehicles, then the computation is analog. Milkowski’s version of the mechanistic approach is similar. He differs from Piccinini by pursuing an “information-processing” gloss, so that computational mechanisms operate over information-bearing states. Milkowski and Piccinini deploy their respective mechanistic theories to defend computationalism.
计算的机械性本质是逻辑、哲学和认知科学中反复出现的主题。Gualtiero Piccinini(2007, 2012, 2015)和 Marcin Milkowski(2013)将这一主题发展为计算系统的机械论。功能机制是一个由互连组件组成的系统,其中每个组件在整个系统中执行某些功能。机械解释通过将系统分解为多个部分,描述各个部分如何组织成更大的系统,并隔离每个部分执行的功能来进行。计算系统是一种特定类型的功能机制。在 Piccinini 看来,计算系统是一种机制,其组件在功能上是按照规则组织起来的。与 Putnam 对多重可实现性的讨论相呼应,Piccinini 要求规则独立于介质,因为它们从车辆的特定物理实现中抽象出来。计算解释将系统分解为多个部分,并描述每个部分如何帮助系统处理相关车辆。如果系统处理结构离散的车辆,则计算是数字化的。如果系统处理连续的车辆,则计算是模拟的。Milkowski 的机械论方法版本与此类似。他与 Piccinini 的不同之处在于追求“信息处理”的光环,因此计算机制在信息承载状态上运行。Milkowski 和 Piccinini 利用他们各自的机械理论来捍卫计算主义。
Mechanistic computationalists typically individuate computational states non-semantically. They therefore encounter worries about the explanatory role of representational content, similar to worries encountered by FSC and structuralism. In this spirit, Shagrir (2014) complains that mechanistic computationalism does not accommodate cognitive science explanations that are simultaneously computational and representational. The perceived force of this criticism will depend upon one’s sympathy for content-involving computationalism.
机械计算论者通常以非语义的方式个性化计算状态。因此,他们遇到了对表征内容的解释作用的担忧,类似于 FSC 和结构主义遇到的担忧。本着这种精神,Shagrir(2014)抱怨机械计算主义无法容纳同时是计算和表征的认知科学解释。这种批评的感知力量将取决于一个人对涉及内容的计算主义的同情。
6.5 Pluralism 6.5 多元主义
We have surveyed various contrasting and sometimes overlapping conceptions of computation: classical computation, connectionist computation, neural computation, formal-syntactic computation, content-involving computation, information-processing computation, functional computation, structuralist computation, and mechanistic computation. Each conception yields a different form of computationalism. Each conception has its own strengths and weaknesses. One might adopt a pluralistic stance that recognizes distinct legitimate conceptions. Rather than elevate one conception above the others, pluralists happily employ whichever conception seems useful in a given explanatory context. Edelman (2008) takes a pluralistic line, as does Chalmers (2012) in his most recent discussion.
我们调查了各种对比鲜明且有时重叠的计算概念:经典计算、连接主义计算、神经计算、形式句法计算、涉及内容的计算、信息处理计算、函数计算、结构主义计算和机械计算。每个概念都会产生不同形式的计算主义。每个概念都有自己的优点和缺点。人们可能会采取一种多元主义的立场,承认不同的合法概念。多元主义者没有将一个概念提升到其他概念之上,而是愉快地采用在给定的解释上下文中似乎有用的任何概念。Edelman(2008)采取了多元路线,Chalmers(2012)在他最近的讨论中也是如此。
The pluralistic line raises some natural questions. Can we provide a general analysis that encompasses all or most types of computation? Do all computations share certain characteristic marks with one another? Are they perhaps instead united by something like family resemblance? Deeper understanding of computation requires us to grapple with these questions.
多元路线提出了一些自然的问题。我们能否提供包含所有或大多数计算类型的一般分析?所有计算彼此之间是否共享某些特征标记?他们是否因为家庭相似性而团结在一起?对计算的更深入理解需要我们努力解决这些问题。
7. Arguments against computationalism 7. 反对计算主义的论点
CTM has attracted numerous objections. In many cases, the objections apply only to specific versions of CTM (such as classical computationalism or connectionist computationalism). Here are a few prominent objections. See also the entry the Chinese room argument for a widely discussed objection to classical computationalism advanced by John Searle (1980).
澳门电讯招致了许多反对意见。在许多情况下,反对意见仅适用于 CTM 的特定版本(例如经典计算主义或连接主义计算主义)。以下是一些突出的反对意见。另见条目 The Chinese room argument,该论点由 John Searle(1980)提出对经典计算主义的广泛讨论的反对意见。
7.1 Triviality arguments 7.1 琐碎论点
A recurring worry is that CTM is trivial, because we can describe almost any physical system as executing computations. Searle (1990) claims that a wall implements any computer program, since we can discern some pattern of molecular movements in the wall that is isomorphic to the formal structure of the program. Putnam (1988: 121–125) defends a less extreme but still very strong triviality thesis along the same lines. Triviality arguments play a large role in the philosophical literature. Anti-computationalists deploy triviality arguments against computationalism, while computationalists seek to avoid triviality.
一个反复出现的担忧是 CTM 是微不足道的,因为我们几乎可以将任何物理系统描述为执行计算。Searle(1990)声称墙壁实现了任何计算机程序,因为我们可以辨别出墙壁中的一些分子运动模式,这些模式与程序的形式结构同构。普特南(1988: 121–125)按照同样的思路为一个不那么极端但仍然非常强烈的琐碎论点辩护。琐碎论证在哲学文献中起着重要作用。反计算论者利用琐碎的论点来反对计算主义,而计算论者则试图避免琐碎。
Computationalists usually rebut triviality arguments by insisting that the arguments overlook constraints upon computational implementation, constraints that bar trivializing implementations. The constraints may be counterfactual, causal, semantic, or otherwise, depending on one’s favored theory of computation. For example, David Chalmers (1995, 1996a) and B. Jack Copeland (1996) hold that Putnam’s triviality argument ignores counterfactual conditionals that a physical system must satisfy in order to implement a computational model. Other philosophers say that a physical system must have representational properties to implement a computational model (Fodor 1998: 11–12; Ladyman 2009; Sprevak 2010) or at least to implement a content-involving computational model (Rescorla 2013, 2014b). The details here vary considerably, and computationalists debate amongst themselves exactly which types of computation can avoid which triviality arguments. But most computationalists agree that we can avoid any devastating triviality worries through a sufficiently robust theory of the implementation relation between computational models and physical systems.
计算论者通常通过坚持认为这些论点忽略了计算实现的约束来反驳琐碎的论点,这些约束禁止轻视实现。约束可能是反事实的、因果的、语义的或其他,这取决于一个人喜欢的计算理论。例如,David Chalmers(1995, 1996a)和 B. Jack Copeland(1996)认为 Putnam 的琐碎论证忽略了物理系统为了实现计算模型必须满足的反事实条件。其他哲学家说,物理系统必须具有表征属性才能实现计算模型(Fodor 1998:11-12;Ladyman 2009 年;Sprevak 2010),或者至少实现一个涉及内容的计算模型(Rescorla 2013,2014b)。这里的细节差异很大,计算论者之间争论到底哪种类型的计算可以避免哪些琐碎的论点。但大多数计算论者都同意,我们可以通过一个足够健壮的计算模型和物理系统之间实现关系的理论来避免任何毁灭性的琐碎担忧。
Pancomputationalism holds that every physical system implements a computational model. This thesis is plausible, since any physical system arguably implements a sufficiently trivial computational model (e.g., a one-state finite state automaton). As Chalmers (2011) notes, pancomputationalism does not seem worrisome for computationalism. What would be worrisome is the much stronger triviality thesis that almost every physical system implements almost every computational model.For further discussion of triviality arguments and computational implementation, see Sprevak (2019) and the entry computation in physical systems.
泛计算主义认为每个物理系统都实现了一个计算模型。这个论点是合理的,因为任何物理系统都可以说实现了一个足够琐碎的计算模型(例如,单状态有限状态自动机)。正如 Chalmers(2011)所指出的,泛计算主义似乎并不令人担忧。令人担忧的是更强的琐碎论点,即几乎每个物理系统都实现了几乎所有的计算模型。
7.2 Gödel’s incompleteness theorem 7.2 哥德尔不完备性定理
According to some authors, Gödel’s incompleteness theorems show that human mathematical capacities outstrip the capacities of any Turing machine (Nagel and Newman 1958). J.R. Lucas (1961) develops this position into a famous critique of CCTM. Roger Penrose pursues the critique in The Emperor’s New Mind (1989) and subsequent writings. Various philosophers and logicians have answered the critique, arguing that existing formulations suffer from fallacies, question-begging assumptions, and even outright mathematical errors (Bowie 1982; Chalmers 1996b; Feferman 1996; Lewis 1969, 1979; Putnam 1975: 365–366, 1994; Shapiro 2003). There is a wide consensus that this criticism of CCTM lacks any force. It may turn out that certain human mental capacities outstrip Turing-computability, but Gödel’s incompleteness theorems provide no reason to anticipate that outcome.
根据一些作者的说法,哥德尔不完备性定理表明,人类的数学能力超过了任何图灵机的能力(Nagel 和 Newman 1958)。J.R. Lucas(1961)将这一立场发展成对 CCTM 的著名批评。罗杰·彭罗斯(Roger Penrose)在《皇帝的新思想》(The Emperor’s New Mind,1989 年)和随后的著作中追求这种批判。各种哲学家和逻辑学家都回答了这种批评,认为现有的表述存在谬误、乞求问题的假设,甚至是彻头彻尾的数学错误(Bowie 1982;Chalmers 1996b;Feferman 1996 年;Lewis 1969, 1979;普特南 1975:365-366,1994;Shapiro 2003 年)。人们普遍认为,这种对 CCTM 的批评没有任何力量。事实证明,某些人类的心理能力超过了图灵的计算能力,但哥德尔的不完备性定理没有理由预测这种结果。
7.3 Limits of computational modeling 7.3 计算建模的局限性
Could a computer compose the Eroica symphony? Or discover general relativity? Or even replicate a child’s effortless ability to perceive the environment, tie her shoelaces, and discern the emotions of others? Intuitive, creative, or skillful human activity may seem to resist formalization by a computer program (Dreyfus 1972, 1992). More generally, one might worry that crucial aspects of human cognition elude computational modeling, especially classical computational modeling.
计算机可以谱出 Eroica 交响曲吗?还是发现广义相对论?或者甚至复制一个孩子毫不费力地感知环境、系鞋带和辨别他人情绪的能力?直觉、创造性或熟练的人类活动似乎抵制计算机程序的形式化(Dreyfus 1972,1992)。更普遍地说,人们可能会担心人类认知的关键方面无法进行计算建模,尤其是经典计算建模。
Ironically, Fodor promulgates a forceful version of this critique. Even in his earliest statements of CCTM, Fodor (1975: 197–205) expresses considerable skepticism that CCTM can handle all important cognitive phenomena. The pessimism becomes more pronounced in his later writings (1983, 2000), which focus especially on abductive reasoning as a mental phenomenon that potentially eludes computational modeling. His core argument may be summarized as follows:
具有讽刺意味的是,福多尔对这种批评提出了一个强有力的版本。即使在他最早的 CCTM 陈述中,Fodor(1975: 197–205)也对 CCTM 能否处理所有重要的认知现象表示相当大的怀疑。这种悲观主义在他后来的著作(1983 年、2000 年)中变得更加明显,这些著作特别关注归纳推理作为一种可能逃避计算建模的心理现象。他的核心论点可以总结如下:
-
(1) Turing-style computation is sensitive only to “local” properties of a mental representation, which are exhausted by the identity and arrangement of the representation’s constituents.
图灵式计算仅对心理表征的“局部”属性敏感,这些属性被表征成分的身份和排列所耗尽。
-
(2) Many mental processes, paradigmatically abduction, are sensitive to “nonlocal” properties such as relevance, simplicity, and conservatism.
许多心理过程,从范式上讲是绑架的,对 “非局部 ”属性很敏感,如相关性、简单性和保守性。
-
(3) Hence, we may have to abandon Turing-style modeling of the relevant processes.
因此,我们可能不得不放弃相关过程的图灵式建模。
-
(4) Unfortunately, we have currently have no idea what alternative theory might serve as a suitable replacement.
不幸的是,我们目前不知道什么替代理论可以作为合适的替代品。
Some critics deny (1), arguing that suitable Turing-style computations can be sensitive to “nonlocal” properties (Schneider 2011; Wilson 2005). Some challenge (2), arguing that typical abductive inferences are sensitive only to “local” properties (Carruthers 2003; Ludwig and Schneider 2008; Sperber 2002). Some concede step (3) but dispute step (4), insisting that we have promising non-Turing-style models of the relevant mental processes (Pinker 2005). Partly spurred by such criticisms, Fodor elaborates his argument in considerable detail. To defend (2), he critiques theories that model abduction by deploying “local” heuristic algorithms (2005: 41–46; 2008: 115–126) or by positing a profusion of domain-specific cognitive modules (2005: 56–100). To defend (4), he critiques various theories that handle abduction through non-Turing-style models (2000: 46–53; 2008), such as connectionist networks.
一些批评者否认(1),认为合适的图灵式计算可能对“非局部”属性敏感(Schneider 2011;Wilson 2005 年)。一些人提出了挑战(2),认为典型的归纳推理仅对“局部”属性敏感(Carruthers 2003;Ludwig 和 Schneider 2008;Sperber 2002 年)。有些人承认步骤(3)但对步骤(4)提出异议,坚持认为我们有前途的相关心理过程的非图灵式模型(Pinker 2005)。在一定程度上受到这些批评的刺激,福多尔相当详细地阐述了他的论点。为了捍卫(2),他批评了通过部署“局部”启发式算法(2005: 41–46;2008: 115–126)或假设大量特定领域的认知模块(2005: 56–100)来模拟绑架的理论。为了捍卫(4),他批评了通过非图灵式模型处理绑架的各种理论(2000: 46–53; 2008),例如连接主义网络。
The scope and limits of computational modeling remain controversial. We may expect this topic to remain an active focus of inquiry, pursued jointly with AI.
计算建模的范围和限制仍然存在争议。我们可以预期,这个话题将继续成为与 AI 共同探讨的积极关注点。
7.4 Temporal arguments 7.4 临时参数
Mental activity unfolds in time. Moreover, the mind accomplishes sophisticated tasks (e.g., perceptual estimation) very quickly. Many critics worry that computationalism, especially classical computationalism, does not adequately accommodate temporal aspects of cognition. A Turing-style model makes no explicit mention of the time scale over which computation occurs. One could physically implement the same abstract Turing machine with a silicon-based device, or a slower vacuum-tube device, or an even slower pulley-and-lever device. Critics recommend that we reject CCTM in favor of some alternative framework that more directly incorporates temporal considerations. van Gelder and Port (1995) use this argument to promote a non-computational dynamical systems framework for modeling mental activity. Eliasmith (2003, 2013: 12–13) uses it to support his Neural Engineering Framework.
心理活动随着时间的推移而展开。此外,大脑可以非常迅速地完成复杂的任务(例如,感知估计)。许多批评者担心计算主义,尤其是经典计算主义,不能充分适应认知的时间方面。图灵式模型没有明确提到计算发生的时间尺度。人们可以用硅基器件、更慢的真空管器件或更慢的滑轮和杠杆器件来物理实现相同的抽象图灵机。批评者建议我们拒绝 CCTM,而支持一些更直接地包含时间考虑的替代框架。van Gelder 和 Port(1995)使用这个论点来推广一个用于模拟心理活动的非计算动态系统框架。Eliasmith(2003, 2013: 12-13)使用它来支持他的神经工程框架。
Computationalists respond that we can supplement an abstract computational model with temporal considerations (Piccinini 2010; Weiskopf 2004). For example, a Turing machine model presupposes discrete “stages of computation”, without describing how the stages relate to physical time. But we can supplement our model by describing how long each stage lasts, thereby converting our non-temporal Turing machine model into a theory that yields detailed temporal predictions. Many advocates of CTM employ supplementation along these lines to study temporal properties of cognition (Newell 1990). Similar supplementation figures prominently in computer science, whose practitioners are quite concerned to build machines with appropriate temporal properties. Computationalists conclude that a suitably supplemented version of CTM can adequately capture how cognition unfolds in time.
计算论者回应说,我们可以用时间考虑来补充抽象的计算模型(Piccinini 2010;Weiskopf 2004 年)。例如,图灵机模型以离散的“计算阶段”为前提,而不描述这些阶段与物理时间的关系。但是我们可以通过描述每个阶段持续多长时间来补充我们的模型,从而将我们的非时间图灵机模型转换为产生详细时间预测的理论。许多 CTM 的倡导者沿着这些思路使用补充剂来研究认知的时间特性(Newell 1990)。类似的补充在计算机科学中占主导地位,计算机科学的从业者非常关心构建具有适当时间特性的机器。计算论者得出结论,适当补充的 CTM 版本可以充分捕捉认知如何及时展开。
A second temporal objection highlights the contrast between discrete and continuous temporal evolution (van Gelder and Port 1995). Computation by a Turing machine unfolds in discrete stages, while mental activity unfolds in a continuous time. Thus, there is a fundamental mismatch between the temporal properties of Turing-style computation and those of actual mental activity. We need a psychological theory that describes continuous temporal evolution.
第二个时间反对意见强调了离散和连续时间进化之间的对比(van Gelder 和 Port 1995)。图灵机的计算以离散的阶段展开,而心理活动则以连续的时间展开。因此,图灵式计算的时间属性与实际心理活动的时间属性之间存在根本的不匹配。我们需要一种描述连续时间进化的心理学理论。
Computationalists respond that this objection assumes what is to be shown: that cognitive activity does not fall into explanatory significant discrete stages (Weiskopf 2004). Assuming that physical time is continuous, it follows that mental activity unfolds in continuous time. It does not follow that cognitive models must have continuous temporal structure. A personal computer operates in continuous time, and its physical state evolves continuously. A complete physical theory will reflect all those physical changes. But our computational model does not reflect every physical change to the computer. Our computational model has discrete temporal structure. Why assume that a good cognitive-level model of the mind must reflect every physical change to the brain? Even if there is a continuum of evolving physical states, why assume a continuum of evolving cognitive states? The mere fact of continuous temporal evolution does not militate against computational models with discrete temporal structure.
计算论者回应说,这种反对意见假设了要证明的:认知活动不属于解释性的重要离散阶段(Weiskopf 2004)。假设物理时间是连续的,那么心理活动在连续的时间内展开。这并不意味着认知模型必须具有连续的时间结构。个人计算机在连续的时间中运行,其物理状态不断演变。一个完整的物理理论将反映所有这些物理变化。但是我们的计算模型并不能反映计算机的每一个物理变化。我们的计算模型具有离散的时间结构。为什么假设一个好的认知层面的心智模型必须反映大脑的每一个物理变化呢?即使存在一个不断发展的物理状态的连续体,为什么还要假设一个不断发展的认知状态的连续体呢?连续时间进化这一事实并不能反对具有离散时间结构的计算模型。
7.5 Embodied cognition 7.5 具身认知
Embodied cognition is a research program that draws inspiration from the continental philosopher Maurice Merleau-Ponty, the perceptual psychologist J.J. Gibson, and other assorted influences. It is a fairly heterogeneous movement, but the basic strategy is to emphasize links between cognition, bodily action, and the surrounding environment. See Varela, Thompson, and Rosch (1991) for an influential early statement. In many cases, proponents deploy tools of dynamical systems theory. Proponents typically present their approach as a radical alternative to computationalism (Chemero 2009; Kelso 1995; Thelen and Smith 1994). CTM, they complain, treats mental activity as static symbol manipulation detached from the embedding environment. It neglects myriad complex ways that the environment causally or constitutively shapes mental activity. We should replace CTM with a new picture that emphasizes continuous links between mind, body, and environment. Agent-environment dynamics, not internal mental computation, holds the key to understanding cognition. Often, a broadly eliminativist attitude towards intentionality propels this critique.
具身认知是一个研究项目,它从大陆哲学家莫里斯·梅洛-庞蒂(Maurice Merleau-Ponty)、知觉心理学家 J.J. 吉布森(J.J. Gibson)和其他各种影响中汲取灵感。这是一个相当异质的运动,但基本策略是强调认知、身体行为和周围环境之间的联系。参见 Varela, Thompson, and Rosch(1991)有影响力的早期陈述。在许多情况下,支持者使用了动力系统理论的工具。支持者通常将他们的方法呈现为计算主义的激进替代方案(Chemero 2009;Kelso 1995 年;Thelen 和 Smith 1994)。他们抱怨说,CTM 将心理活动视为脱离嵌入环境的静态符号操作。它忽略了环境因果或构成性地塑造心理活动的无数复杂方式。我们应该用一幅强调思想、身体和环境之间持续联系的新图片来取代 CTM。代理-环境动力学,而不是内部心理计算,是理解认知的关键。通常,对意向性的广泛消除主义态度推动了这种批评。
Computationalists respond that CTM allows due recognition of cognition’s embodiment. Computational models can take into account how mind, body, and environment continuously interact. After all, computational models can incorporate sensory inputs and motor outputs. There is no obvious reason why an emphasis upon agent-environment dynamics precludes a dual emphasis upon internal mental computation (Clark 2014: 140–165; Rupert 2009). Computationalists maintain that CTM can incorporate any legitimate insights offered by the embodied cognition movement. They also insist that CTM remains our best overall framework for explaining numerous core psychological phenomena.
计算论者回应说,CTM 允许对认知的体现进行适当认可。计算模型可以考虑思想、身体和环境如何持续交互。毕竟,计算模型可以包含传感输入和运动输出。没有明显的理由说明为什么强调代理-环境动力学排除了对内部心理计算的双重强调(克拉克 2014:140-165;Rupert 2009 年)。计算论者坚持认为,CTM 可以整合具身认知运动提供的任何合法见解。他们还坚持认为 CTM 仍然是我们解释众多核心心理现象的最佳整体框架。
Bibliography
- Aitchison, L. and Lengyel, M., 2016, “The Hamiltonian Brain: Efficient Probabilistic Inference with Excitatory-Inhibitory Neural Circuit Dynamics”, PloS Computational Biology, 12: e1005186.
- Arjo, D., 1996, “Sticking Up for Oedipus: Fodor on Intentional Generalizations and Broad Content”, Mind and Language, 11: 231–245.
- Aydede, M., 1998, “Fodor on Concepts and Frege Puzzles”, Pacific Philosophical Quarterly, 79: 289–294.
- –––, 2005, “Computationalism and Functionalism: Syntactic Theory of Mind Revisited”, in Turkish Studies in the History and Philosophy of Science, G. Irzik and G. Güzeldere (eds), Dordrecht: Springer.
- Aydede, M. and P. Robbins, 2001, “Are Frege Cases Exceptions to Intentional Generalizations?”, Canadian Journal of Philosophy, 31: 1–22.
- Bechtel, W. and A. Abrahamsen, 2002, Connectionism and the Mind, Malden: Blackwell.
- Bermúdez, J.L., 2005, Philosophy of Psychology: A Contemporary Introduction, New York: Routledge.
- –––, 2010, Cognitive Science: An Introduction to the Science of the Mind, Cambridge: Cambridge University Press.
- Block, N., 1978, “Troubles With Functionalism”, Minnesota Studies in the Philosophy of Science, 9: 261–325.
- –––, 1981, “Psychologism and Behaviorism”, Philosophical Review, 90: 5–43.
- –––, 1983, “Mental Pictures and Cognitive Science”, Philosophical Review, 92: 499–539.
- –––, 1986, “Advertisement for a Semantics for Psychology”, Midwest Studies in Philosophy, 10: 615–678.
- –––, 1990, “Can the Mind Change the World?”, in Meaning and Method: Essays in Honor of Hilary Putnam, G. Boolos (ed.), Cambridge: Cambridge University Press.
- –––, 1995, The Mind as the Software of the Brain, in Invitation to Cognitive Science, vol. 3: Thinking, E. Smith and B. Osherson (eds), Cambridge, MA: MIT Press.
- Block, N. and J. Fodor, 1972, “What Psychological States Are Not”, The Philosophical Review, 81: 159–181.
- Boden, M., 1991, “Horses of a Different Color?”, in Ramsey et al. 1991: 3–19.
- Bontly, T., 1998, “Individualism and the Nature of Syntactic States”, The British Journal for the Philosophy of Science, 49: 557–574.
- Bowie, G.L., 1982, “Lucas’s Number is Finally Up”, Journal of Philosophical Logic, 11: 79–285.
- Brogan, W., 1990, Modern Control Theory, 3rd edition. Englewood Cliffs: Prentice Hall.
- Buckner, C., 2019, “Deep Learning: A Philosophical Introduction”, Philosophy Compass, 14: e12625.
- Buckner, C., and J. Garson, 2019, “Connectionism and Post-Connectionist Models”, in Sprevak and Colombo 2019: 175–191.
- Buesing, L., J. Bill, B. Nessler, and W. Maass, W., 2011, “Neural Dynamics of Sampling: A Model for Stochastic Computation in Recurring Networks of Spiking Neurons”, PLOS Computational Biology, 7: e1002211.
- Burge, T., 1982, “Other Bodies”, in Thought and Object, A. Woodfield (ed.), Oxford: Oxford University Press. Reprinted in Burge 2007: 82–99.
- –––, 1986, “Individualism and Psychology”, The Philosophical Review, 95: 3–45. Reprinted in Burge 2007: 221–253.
- –––, 1989, “Individuation and Causation in Psychology”, Pacific Philosophical Quarterly, 70: 303–322. Reprinted in Burge 2007: 316–333.
- –––, 1995, “Intentional Properties and Causation”, in Philosophy of Psychology, C. MacDonald and G. MacDonald (eds), Oxford: Blackwell. Reprinted in Burge 2007: 334–343.
- –––, 2005, “Disjunctivism and Perceptual Psychology”, Philosophical Topics, 33: 1–78.
- –––, 2007, Foundations of Mind, Oxford: Oxford University Press.
- –––, 2010a, Origins of Objectivity, Oxford: Oxford University Press.
- –––, 2010b, “Origins of Perception”, Disputatio, 4: 1–38.
- –––, 2010c, “Steps Towards Origins of Propositional Thought”, Disputatio, 4: 39–67.
- –––, 2013, Cognition through Understanding, Oxford: Oxford University Press.
- Camp, E., 2009, “A Language of Baboon Thought?”, in The Philosophy of Animal Minds, R. Lurz (ed.), Cambridge: Cambridge University Press.
- Carruthers, P., 2003, “On Fodor’s Problem”, Mind and Language, 18: 508–523.
- Chalmers, D., 1990, “Syntactic Transformations on Distributed Representations”, Connection Science, 2: 53–62.
- –––, 1993, “Why Fodor and Pylyshyn Were Wrong: The Simplest Refutation”, Philosophical Psychology, 63: 305–319.
- –––, 1995, “On Implementing a Computation”, Minds and Machines, 4: 391–402.
- –––, 1996a, “Does a Rock Implement Every Finite State Automaton?”, Synthese, 108: 309–333.
- –––, 1996b, “Minds, Machines, and Mathematics”, Psyche, 2: 11–20.
- –––, 2002, “The Components of Content”, in Philosophy of Mind: Classical and Contemporary Readings, D. Chalmers (ed.), Oxford: Oxford University Press.
- –––, 2011, “A Computational Foundation for the Study of Cognition”, The Journal of Cognitive Science, 12: 323–357.
- –––, 2012, “The Varieties of Computation: A Reply”, The Journal of Cognitive Science, 13: 213–248.
- Chemero, A., 2009, Radical Embodied Cognitive Science, Cambridge, MA: MIT Press.
- Cheney, D. and R. Seyfarth, 2007, Baboon Metaphysics: The Evolution of a Social Mind, Chicago: University of Chicago Press.
- Chomsky, N., 1965, Aspects of the Theory of Syntax, Cambridge, MA: MIT Press.
- Church, A., 1936, “An Unsolvable Problem of Elementary Number Theory”, American Journal of Mathematics, 58: 345–363.
- Churchland, P.M., 1981, “Eliminative Materialism and the Propositional Attitudes”, Journal of Philosophy, 78: 67–90.
- –––, 1989, A Neurocomputational Perspective: The Nature of Mind and the Structure of Science, Cambridge, MA: MIT Press.
- –––, 1995, The Engine of Reason, the Seat of the Soul, Cambridge, MA: MIT Press.
- –––, 2007, Neurophilosophy At Work, Cambridge: Cambridge University Press.
- Churchland, P.S., 1986, Neurophilosophy, Cambridge, MA: MIT Press.
- Churchland, P.S., C. Koch, and T. Sejnowski, 1990, “What Is Computational Neuroscience?”, in Computational Neuroscience, E. Schwartz (ed.), Cambridge, MA: MIT Press.
- Churchland, P.S. and T. Sejnowski, 1992, The Computational Brain, Cambridge, MA: MIT Press.
- Clark, A., 2014, Mindware: An Introduction to the Philosophy of Cognitive Science, Oxford: Oxford University Press.
- Clayton, N., N. Emery, and A. Dickinson, 2006, “The Rationality of Animal Memory: Complex Caching Strategies of Western Scrub Jays”, in Rational Animals?, M. Nudds and S. Hurley (eds), Oxford: Oxford University Press.
- Copeland, J., 1996, “What is Computation?”, Synthese, 108: 335–359.
- Cover, T. and J. Thomas, 2006, Elements of Information Theory, Hoboken: Wiley.
- Crane, T., 1991, “All the Difference in the World”, Philosophical Quarterly, 41: 1–25.
- Crick, F. and C. Asanuma, 1986, “Certain Aspects of the Anatomy and Physiology of the Cerebral Cortex”, in McClelland et al. 1987: 333–371.
- Cummins, R., 1989, Meaning and Mental Representation, Cambridge, MA: MIT Press.
- Davidson, D., 1980, Essays on Actions and Events, Oxford: Clarendon Press.
- Dayan, P., 2009, “A Neurocomputational Jeremiad”, Nature Neuroscience, 12: 1207.
- Dennett, D., 1971, “Intentional Systems”, Journal of Philosophy, 68: 87–106.
- –––, 1987, The Intentional Stance, Cambridge, MA: MIT Press.
- –––, 1991, “Mother Nature versus the Walking Encyclopedia”, in Ramsey, et al. 1991: 21–30.
- Dietrich, E., 1989, “Semantics and the Computational Paradigm in Cognitive Psychology”, Synthese, 79: 119–141.
- Donahoe, J., 2010, “Man as Machine: A Review of Memory and Computational Brain, by C.R. Gallistel and A.P. King”, Behavior and Philosophy, 38: 83–101.
- Dreyfus, H., 1972, What Computers Can’t Do, Cambridge, MA: MIT Press.
- –––, 1992, What Computers Still Can’t Do, Cambridge, MA: MIT Press.
- Dretske, F., 1981, Knowledge and the Flow of Information, Oxford: Blackwell.
- –––, 1993, “Mental Events as Structuring Causes of Behavior”, in Mental Causation, J. Heil and A. Mele (eds), Oxford: Clarendon Press.
- Edelman, S., 2008, Computing the Mind, Oxford: Oxford University Press.
- –––, 2014, “How to Write a ‘How a Build a Brain’ Book”, Trends in Cognitive Science, 18: 118–119.
- Egan, F., 1991, “Must Psychology be Individualistic?”, Philosophical Review, 100: 179–203.
- –––, 1992, “Individualism, Computation, and Perceptual Content”, Mind, 101: 443–459.
- –––, 1999, “In Defense of Narrow Mindedness”, Mind and Language, 14: 177–194.
- –––, 2003, “Naturalistic Inquiry: Where Does Mental Representation Fit In?”, in Chomsky and His Critics, L. Antony and N. Hornstein (eds), Malden: Blackwell.
- –––, 2010, “A Modest Role for Content”, Studies in History and Philosophy of Science, 41: 253–259.
- –––, 2014, “How to Think About Mental Content”, Philosophical Studies, 170: 115–135.
- –––, 2019, “The Nature and Function of Content in Computational Models”, in Sprevak and Colombo 2019: 247–258.
- Eliasmith, C., 2003, “Moving Beyond Metaphors: Understanding the Mind for What It Is”, Journal of Philosophy, 100: 493–520.
- –––, 2013, How to Build a Brain, Oxford: Oxford: University Press.
- Eliasmith, C. and C.H. Anderson, 2003, Neural Engineering: Computation, Representation and Dynamics in Neurobiological Systems, Cambridge, MA: MIT Press.
- Elman, J., 1990, “Finding Structure in Time”, Cognitive Science, 14: 179–211.
- Feferman, S., 1996, “Penrose’s Gödelian Argument”, Psyche, 2: 21–32.
- Feldman, J. and D. Ballard, 1982, “Connectionist Models and their Properties”, Cognitive Science, 6: 205–254.
- Field, H., 2001, Truth and the Absence of Fact, Oxford: Clarendon Press.
- Figdor, C., 2009, “Semantic Externalism and the Mechanics of Thought”, Minds and Machines, 19: 1–24.
- Fodor, J., 1975, The Language of Thought, New York: Thomas Y. Crowell.
- –––, 1980, “Methodological Solipsism Considered as a Research Strategy in Cognitive Psychology”, Behavioral and Brain Science, 3: 63–73. Reprinted in Fodor 1981: 225–253.
- –––, 1981, Representations, Cambridge: MIT Press.
- –––, 1983, The Modularity of Mind, Cambridge, MA: MIT Press.
- –––, 1987, Psychosemantics, Cambridge: MIT Press.
- –––, 1990, A Theory of Content and Other Essays, Cambridge, MA: MIT Press.
- –––, 1991, “A Modal Argument for Narrow Content”, Journal of Philosophy, 88: 5–26.
- –––, 1994, The Elm and the Expert, Cambridge, MA: MIT Press.
- –––, 1998, Concepts, Oxford: Clarendon Press.
- –––, 2000, The Mind Doesn’t Work That Way, Cambridge, MA: MIT Press.
- –––, 2005, “Reply to Steven Pinker ‘So How Does the Mind Work?’”, Mind and Language, 20: 25–32.
- –––, 2008, LOT2, Oxford: Clarendon Press.
- Fodor, J. and Z. Pylyshyn, 1988, “Connectionism and Cognitive Architecture: A Critical Analysis”, Cognition, 28: 3–71.
- Frege, G., 1879/1967, Begriffsschrift, eine der Arithmetischen Nachgebildete Formelsprache des Reinen Denkens. Reprinted as Concept Script, a Formal Language of Pure Thought Modeled upon that of Arithmetic, in From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, J. van Heijenoort (ed.), S. Bauer-Mengelberg (trans.), Cambridge: Harvard University Press.
- Gallistel, C.R., 1990, The Organization of Learning, Cambridge, MA: MIT Press.
- Gallistel, C.R. and King, A., 2009, Memory and the Computational Brain, Malden: Wiley-Blackwell.
- Gandy, R., 1980, “Church’s Thesis and Principles for Mechanism”, in The Kleene Symposium, J. Barwise, H. Keisler, and K. Kunen (eds). Amsterdam: North Holland.
- Gödel, K., 1936/65. “On Formally Undecidable Propositions of Principia Mathematica and Related Systems”, Reprinted with a new Postscript in The Undecidable, M. Davis (ed.), New York: Raven Press Books.
- Grice, P., 1989, Studies in the Ways of Words, Cambridge: Harvard University Press.
- Hadley, R., 2000, “Cognition and the Computational Power of Connectionist Networks”, Connection Science, 12: 95–110.
- Harnish, R., 2002, Minds, Brains, Computers, Malden: Blackwell.
- Haykin, S., 2008, Neural Networks: A Comprehensive Foundation, New York: Prentice Hall.
- Haugeland, J., 1985, Artificial Intelligence: The Very Idea, Cambridge, MA: MIT Press.
- Horgan, T. and J. Tienson, 1996, Connectionism and the Philosophy of Psychology, Cambridge, MA: MIT Press.
- Horowitz, A., 2007, “Computation, External Factors, and Cognitive Explanations”, Philosophical Psychology, 20: 65–80.
- Johnson, K., 2004, “On the Systematicity of Language and Thought”, Journal of Philosophy, 101: 111–139.
- Johnson-Laird, P., 1988, The Computer and the Mind, Cambridge: Harvard University Press.
- –––, 2004, “The History of Mental Models”, in Psychology of Reasoning: Theoretical and Historical Perspectives, K. Manktelow and M.C. Chung (eds), New York: Psychology Press.
- Kazez, J., 1995, “Computationalism and the Causal Role of Content”, Philosophical Studies, 75: 231–260.
- Kelso, J., 1995, Dynamic Patterns, Cambridge, MA: MIT Press.
- Klein, C., 2012, “Two Paradigms for Individuating Implementations”, Journal of Cognitive Science, 13: 167–179.
- Kriegesgorte, K., 2015, “Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing”, Annual Review of Vision Science, 1: 417–446.
- Kriegesgorte, K. and P. Douglas, 2018, “Cognitive Computational Neuroscience”, Nature Neuroscience, 21: 1148–1160.
- Krishevsky, A., I. Sutskever, and G. Hinton, 2012, “ImageNet Classification with Deep Convolutional Neural Networks”, Advances in Neural Information Processing Systems, 25: 1097–1105.
- Krotov, D., and J. Hopfield, 2019, “Unsupervised Learning by Competing Hidden Units”, Proceedings of the National Academy of Sciences, 116: 7723–7731.
- Ladyman, J., 2009, “What Does it Mean to Say that a Physical System Implements a Computation?”, Theoretical Computer Science, 410: 376–383.
- LeCun, Y., Y. Bengio, and G. Hinton, 2015, “Deep Learning”, Nature, 521: 436–444.
- Lewis, D., 1969, “Lucas against Mechanism”, Philosophy, 44: 231–3.
- –––, 1972, “Psychophysical and Theoretical Identifications”, Australasian Journal of Philosophy, 50: 249–58.
- –––, 1979, “Lucas Against Mechanism II”, Canadian Journal of Philosophy, 9: 373–376.
- –––, 1994, “Reduction of Mind”, in A Companion to the Philosophy of Mind, S. Guttenplan (ed.), Oxford: Blackwell.
- Lizier, J., B. Flecker, and P. Williams, 2013, “Towards a Synergy-based Account of Measuring Information Modification”, Proceedings of the 2013 IEEE Symposium on Artificial Life (ALIFE), Singapore: 43–51.
- Ludwig, K. and S. Schneider, 2008, “Fodor’s Critique of the Classical Computational Theory of Mind”, Mind and Language, 23: 123–143.
- Lucas, J.R., 1961, “Minds, Machines, and Gödel”, Philosophy, 36: 112–137.
- Ma, W. J., 2019, “Bayesian Decision Models: A Primer”, Neuron, 104: 164–175.
- Maass, W., 1997, “Networks of Spiking Neurons: The Next Generation of Neural Network Models”, Neural Networks, 10: 1659–1671.
- MacLennan, B., 2012, “Analog Computation”, Computational Complexity, R. Meyers (ed.), New York: Springer.
- Marblestone, A., G. Wayne, and K. Kording, 2016, “Toward an Integration of Deep Learning and Neuroscience”, Frontiers in Computational Neuroscience, 10: 1–41.
- Marcus, G., 2001, The Algebraic Mind, Cambridge, MA: MIT Press.
- Marr, D., 1982, Vision, San Francisco: W.H. Freeman.
- McClelland, J., D. Rumelhart, and G. Hinton, 1986, “The Appeal of Parallel Distributed Processing”, in Rumelhart et al. 1986: 3–44.
- McClelland, J., D. Rumelhart, and the PDP Research Group, 1987, Parallel Distributed Processing, vol. 2. Cambridge, MA: MIT Press.
- McCulloch, W. and W. Pitts, 1943, “A Logical Calculus of the Ideas Immanent in Nervous Activity”, Bulletin of Mathematical Biophysics, 7: 115–133.
- McDermott, D., 2001, Mind and Mechanism, Cambridge, MA: MIT Press.
- Mendola, J., 2008, Anti-Externalism, Oxford: Oxford University Press.
- Milkowski, M., 2013, Explaining the Computational Mind, Cambridge, MA: MIT Press.
- Miller, P., 2018, An Introductory Course in Computational Neuroscience, Cambridge, MA: MIT Press.
- Mole, C., 2014, “Dead Reckoning in the Desert Ant: A Defense of Connectionist Models”, Review of Philosophy and Psychology, 5: 277–290.
- Murphy, K., 2012, Machine Learning: A Probabilistic Perspective, Cambridge, MA: MIT Press.
- Naselaris, T., Bassett, D., Fletcher, A., Körding, K., Kriegeskorte, N., Nienborg, H., Poldrack, R., Shohamy, D., and Kay, K., 2018, “Cognitive Computational Neuroscience: A New Conference for an Emerging Discipline”, Trends in Cognitive Science, 22: 365–367.
- Nagel, E. and J.R. Newman, 1958, Gödel’s Proof, New York: New York University Press.
- Newell, A., 1990, Unified Theories of Cognition, Cambridge: Harvard University Press.
- Newell, A. and H. Simon, 1956, “The Logic Theory Machine: A Complex Information Processing System”, IRE Transactions on Information Theory, IT-2, 3: 61–79.
- –––, 1976, “Computer Science as Empirical Inquiry: Symbols and Search”, Communications of the ACM, 19: 113–126.
- O’Keefe, J. and L. Nadel, 1978, The Hippocampus as a Cognitive Map, Oxford: Clarendon University Press.
- Ockham, W., 1957, Summa Logicae, in his Philosophical Writings, A Selection, P. Boehner (ed. and trans.), London: Nelson.
- Orhan, A. E. and Ma, W. J., 2017, “Efficient Probabilistic Inference in Generic Neural Networks Trained with Non-probabilistic Feedback ”, Nature Communications, 8: 1–14.
- Peacocke, C., 1992, A Study of Concepts, Cambridge, MA: MIT Press.
- –––, 1993, “Externalist Explanation”, Proceedings of the Aristotelian Society, 67: 203–230.
- –––, 1994, “Content, Computation, and Externalism”, Mind and Language, 9: 303–335.
- –––, 1999, “Computation as Involving Content: A Response to Egan”, Mind and Language, 14: 195–202.
- Penrose, R., 1989, The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics, Oxford: Oxford University Press.
- Perry, J., 1998, “Broadening the Mind”, Philosophy and Phenomenological Research, 58: 223–231.
- Piantadosi, S., J. Tenenbaum, and N. Goodman, 2012, “Bootstrapping in a Language of Thought”, Cognition, 123: 199–217.
- Piccinini, G., 2004, “Functionalism, Computationalism, and Mental States”, Studies in History and Philosophy of Science, 35: 811–833.
- –––, 2007, “Computing Mechanisms”, Philosophy of Science, 74: 501–526.
- –––, 2008a, “Computation Without Representation”, Philosophical Studies, 137: 205–241.
- –––, 2008b, “Some Neural Networks Compute, Others Don’t”, Neural Networks, 21: 311–321.
- –––, 2010, “The Resilience of Computationalism”, Philosophy of Science, 77: 852–861.
- –––, 2012, “Computationalism”, in The Oxford Handbook of Philosophy and Cognitive Science, E. Margolis, R. Samuels, and S. Stich (eds), Oxford: Oxford University Press.
- –––, 2015, Physical Computation: A Mechanistic Account, Oxford: Oxford University Press.
- Piccinini, G. and A. Scarantino, 2010, “Computation vs. Information processing: Why their Difference Matters to Cognitive Science”, Studies in History and Philosophy of Science, 41: 237–246.
- Piccinini, G. and S. Bahar, 2013, “Neural Computation and the Computational Theory of Cognition”, Cognitive Science, 37: 453–488.
- Piccinini, G. and O. Shagrir, 2014, “Foundations of Computational Neuroscience”, Current Opinion in Neurobiology, 25: 25–30.
- Pinker, S., 2005, “So How Does the Mind Work?”, Mind and Language, 20: 1–24.
- Pinker, S. and A. Prince, 1988, “On Language and Connectionism”, Cognition, 28: 73–193.
- Pouget, A., Beck, J., Ma., W. J., and Latham, P., 2013, “Probabilistic Brains: Knowns and Unknowns”, Nature Neuroscience, 16: 1170–1178.
- Putnam, H., 1967, “Psychophysical Predicates”, in Art, Mind, and Religion, W. Capitan and D. Merrill (eds), Pittsburgh: University of Pittsburgh Press. Reprinted in Putnam 1975 as “The Nature of Mental States”: 429–440.
- –––, 1975, Mind, Language, and Reality: Philosophical Papers, vol. 2, Cambridge: Cambridge University Press.
- –––, 1983, Realism and Reason: Philosophical Papers, vol. 3. Cambridge: Cambridge University Press.
- –––, 1988, Representation and Reality, Cambridge, MA: MIT Press.
- –––, 1994, “The Best of All Possible Brains?”, The New York Times, November 20, 1994: 7.
- Pylyshyn, Z., 1984, Computation and Cognition, Cambridge, MA: MIT Press.
- Quine, W.V.O., 1960, Word and Object, Cambridge, MA: MIT Press.
- Ramsey, W., S. Stich, and D. Rumelhart (eds), 1991, Philosophy and Connectionist Theory, Hillsdale: Lawrence Erlbaum Associates.
- Rescorla, M., 2009a, “Chrysippus’s Dog as a Case Study in Non-Linguistic Cognition”, in The Philosophy of Animal Minds, R. Lurz (ed.), Cambridge: Cambridge University Press.
- –––, 2009b, “Cognitive Maps and the Language of Thought”, The British Journal for the Philosophy of Science, 60: 377–407.
- –––, 2012, “How to Integrate Representation into Computational Modeling, and Why We Should”, Journal of Cognitive Science, 13: 1–38.
- –––, 2013, “Against Structuralist Theories of Computational Implementation”, British Journal for the Philosophy of Science, 64: 681–707.
- –––, 2014a, “The Causal Relevance of Content to Computation”, Philosophy and Phenomenological Research, 88: 173–208.
- –––, 2014b, “A Theory of Computational Implementation”, Synthese, 191: 1277–1307.
- –––, 2015, “Bayesian Perceptual Psychology”, in The Oxford Handbook of the Philosophy of Perception, M. Matthen (ed.), Oxford: Oxford University Press.
- –––, 2017a, “From Ockham to Turing—and Back Again”, in Turing 100: Philosophical Explorations of the Legacy of Alan Turing, (Boston Studies in the Philosophy and History), A. Bokulich and J. Floyd (eds), Springer.
- –––, 2017b, “Levels of Computational Explanation”, in Philosophy and Computing: Essays in Epistemology, Philosophy of Mind, Logic, and Ethics, T. Powers (ed.), Cham: Springer.
- –––, 2020, “A Realist Perspective on Bayesian Cognitive Science”, in Inference and Consciousness, A. Nes and T. Chan (eds.), New York: Routledge.
- Rogers, T. and J. McClelland, 2014, “Parallel Distributed Processing at 25: Further Explorations of the Microstructure of Cognition”, Cognitive Science, 38: 1024–1077.
- Rumelhart, D., 1989, “The Architecture of Mind: A Connectionist Approach”, in Foundations of Cognitive Science, M. Posner (ed.), Cambridge, MA: MIT Press.
- Rumelhart, D., G. Hinton, and R. Williams, 1986, “Learning Representations by Back-propagating Errors”, Nature, 323: 533–536.
- Rumelhart, D. and J. McClelland, 1986, “PDP Models and General Issues in Cognitive Science”, in Rumelhart et al. 1986: 110–146.
- Rumelhart, D., J. McClelland, and the PDP Research Group, 1986, Parallel Distributed Processing, vol. 1. Cambridge: MIT Press.
- Rupert, R., 2008, “Frege’s Puzzle and Frege Cases: Defending a Quasi-Syntactic Solution”, Cognitive Systems Research, 9: 76–91.
- –––, 2009, Cognitive Systems and the Extended Mind, Oxford: Oxford University Press.
- Russell, S. and P. Norvig, 2010, Artificial Intelligence: A Modern Approach, 3rd ed., New York: Prentice Hall.
- Sawyer, S., 2000, “There Is No Viable Notion of Narrow Content”, in Contemporary Debates in Philosophy of Mind, B. McLaughlin and J. Cohen (eds), Malden: Blackwell.
- Schneider, S., 2005, “Direct Reference, Psychological Explanation, and Frege Cases”, Mind and Language, 20: 423–447.
- –––, 2011, The Language of Thought: A New Philosophical Direction, Cambridge, MA: MIT Press.
- Searle, J., 1980, “Minds, Brains, and Programs”, Behavioral and Brain Sciences, 3: 417–457.
- –––, 1990, “Is the Brain a Digital Computer?”, Proceedings and Addresses of the American Philosophical Association, 64: 21–37.
- Segal, G., 2000, A Slim Book About Narrow Content, Cambridge, MA: MIT Press.
- Shagrir, O., 2001, “Content, Computation, and Externalism”, Mind, 110: 369–400.
- –––, 2006, “Why We View the Brain as a Computer”, Synthese, 153: 393–416.
- –––, 2014, “Review of Explaining the Computational Theory of Mind, by Marcin Milkowski”, Notre Dame Review of Philosophy, January 2014.
- –––, forthcoming, “In Defense of the Semantic View of Computation”, Synthese, first online 11 October 2018; doi:10.1007/s11229-018-01921-z
- Shannon, C., 1948, “A Mathematical Theory of Communication”, Bell System Technical Journal 27: 379–423, 623–656.
- Shapiro, S., 2003, “Truth, Mechanism, and Penrose’s New Argument”, Journal of Philosophical Logic, 32: 19–42.
- Shea, N., 2013, “Naturalizing Representational Content”, Philosophy Compass, 8: 496–509.
- –––, 2018, Representation in Cognitive Science, Oxford: Oxford University Press.
- Sieg, W., 2009, “On Computability”, in Philosophy of Mathematics, A. Irvine (ed.), Burlington: Elsevier.
- Siegelmann, H. and E. Sontag, 1991, “Turing Computability with Neural Nets”, Applied Mathematics Letters, 4: 77–80.
- Siegelmann, H. and E. Sontag, 1995, “On the Computational Power of Neural Nets”, Journal of Computer and Science Systems, 50: 132–150.
- Silverberg, A., 2006, “Chomsky and Egan on Computational Theories of Vision”, Minds and Machines, 16: 495–524.
- Sloman, A., 1978, The Computer Revolution in Philosophy, Hassocks: The Harvester Press.
- Smolensky, P., 1988, “On the Proper Treatment of Connectionism”, Behavioral and Brain Sciences, 11: 1–74.
- –––, 1991, “Connectionism, Constituency, and the Language of Thought”, in Meaning in Mind: Fodor and His Critics, B. Loewer and G. Rey (eds), Cambridge: Blackwell.
- Sperber, D., 2002, “In Defense of Massive Modularity”, in Language, Brain, and Cognitive Development: Essays in Honor of Jacques Mehler, E. Dupoux (ed.), Cambridge, MA: MIT Press.
- Sprevak, M., 2010, “Computation, Individuation, and the Received View on Representation”, Studies in History and Philosophy of Science, 41: 260–270.
- –––, 2019, “Triviality Arguments About Computational Implementation”, in Sprevak and Colombo 2019: 175–191.
- –––, forthcoming, “Two Kinds of Information Processing in Cognition”, Review of Philosophy and Psychology.
- Sprevak, M. and Colombo, M., 2019, The Routledge Handbook of the Computational Mind, New York: Routledge.
- Stalnaker, R., 1999, Context and Content, Oxford: Oxford University Press.
- Stich, S., 1983, From Folk Psychology to Cognitive Science, Cambridge, MA: MIT Press.
- Thelen, E. and L. Smith, 1994, A Dynamical Systems Approach to the Development of Cognition and Action, Cambridge, MA: MIT Press.
- Thrun, S., W. Burgard, and D. Fox, 2006, Probabilistic Robotics, Cambridge, MA: MIT Press.
- Thrun, S., M. Montemerlo, and H. Dahlkamp, et al., 2006, “Stanley: The Robot That Won the DARPA Grand Challenge”, Journal of Field Robotics, 23: 661–692.
- Tolman, E., 1948, “Cognitive Maps in Rats and Men”, Psychological Review, 55: 189–208.
- Trappenberg, T., 2010, Fundamentals of Computational Neuroscience, Oxford: Oxford University Press.
- Turing, A., 1936, “On Computable Numbers, with an Application to the Entscheidungsproblem”, Proceedings of the London Mathematical Society, 42: 230–265.
- –––, 1950, “Computing Machinery and Intelligence”, Mind, 49: 433–460.
- van Gelder, T., 1990, “Compositionality: A Connectionist Variation on a Classical Theme”,Cognitive Science, 14: 355–384.
- van Gelder, T. and R. Port, 1995, “It’s About Time: An Overview of the Dynamical Approach to Cognition”, in Mind as Motion: Explorations in the Dynamics of Cognition, R. Port and T. van Gelder (eds), Cambridge, MA: MIT Press.
- Varela, F., Thompson, E. and Rosch, E., 1991, The Embodied Mind: Cognitive Science and Human Experience, Cambridge, MA: MIT Press.
- von Neumann, J., 1945, “First Draft of a Report on the EDVAC”, Moore School of Electrical Engineering, University of Pennsylvania. Philadelphia, PA.
- Wakefield, J., 2002, “Broad versus Narrow Content in the Explanation of Action: Fodor on Frege Cases”, Philosophical Psychology, 15: 119–133.
- Weiskopf, D., 2004, “The Place of Time in Cognition”, British Journal for the Philosophy of Science, 55: 87–105.
- Whitehead, A.N. and B. Russell, 1925, Principia Mathematica, vol. 1, 2nd ed., Cambridge: Cambridge University Press.
- Wilson, R., 2005, “What Computers (Still, Still) Can’t Do”, in New Essays in Philosophy of Language and Mind, R. Stainton, M. Ezcurdia, and C.D. Viger (eds). Canadian Journal of Philosophy, supplementary issue 30: 407–425.
- Yablo, S., 1997, “Wide Causation”, Philosophical Perspectives, 11: 251–281.
- –––, 2003, “Causal Relevance”, Philosophical Issues, 13: 316–327.
- Zednik, C., 2019, “Computational Cognitive Neuroscience”, in Sprevak and Colombo 2019: 357–369.
- Zylberberg, A., S. Dehaene, P. Roelfsema, and M. Sigman, 2011, “The Human Turing Machine”, Trends in Cognitive Science, 15: 293–300.
via:
-
Cognitive Science
-
The Computational Theory of Mind