算法面试题,在数组中找出这样的数,它比它前面的数都大,比它后面的数都小

问题:在一个数组A[n]中,找出所有这样的A[i],它比它前面的所有数都要大,比它后面的数都要小
例如:如果A[8] = {1 2 3 4 5 6 7 8},则输出 1 2 3 4 5 6 7 8
            如果A[8] = {8 7 6 5 4 3 2 1},则输出为空

            如果A[8] = {3 5 4 2 1 6 8 7},则输出为6

这里给出四种方法,所有方法中,beg指向数组第一个元素,end指向数组中最后一个元素。

方法一:暴力搜索法

对每一个元素,判断它是否比它前面的数都大,然后判断它是否比它后面的数都小

void ViolentWay(int *beg, int *end){
	if(beg == end){
		cout<<*beg<<end;
		return;
	}
	int *cur;
	for(cur = beg; cur<=end; ++cur){
		int *temp;
		for(temp = beg; temp<cur; ++temp){<span style="white-space:pre">	</span>//与前面的数进行比较
			if(*temp > *cur){
				break;
			}
		}
		if(temp != cur){<span style="white-space:pre">	</span>// 如果是中途break出来的,则 temp!=cur ,这时要continue,对下一个数进行判断
			continue;
		}
		for(temp=cur+1; temp<end+1; ++temp){<span style="white-space:pre">	</span>// 与后面的数进行比较
			if(*temp < *cur){
				break;
			}
		}
		if(temp == end+1){<span style="white-space:pre">	</span>// 两个循环安全走完,复合要求
			cout<<*cur<<' ';
		}
	}
	cout<<endl;
}
方法二:排序辅助法

这种方法不可行,请直接忽略!!!

对于原先的数组A[n],申请一个新的数组B[n],B[n]存放A[n]排序后的结果。对应位置上A[i]==B[i],则输出。

void SortWay(int *beg, int *end){
	if(beg == end){
		cout<<*beg<<end;
		return;
	}

	int Size = end-beg+1;
	int *Low = new int[Size];<span style="white-space:pre">	</span>// 申请内存空间
	int *High = Low;

	int *temp;
	for(temp=beg; temp<=end; ++temp){<span style="white-space:pre">	</span>// 数组复制
		*High++ = *temp;
	}
	sort(Low, High);<span style="white-space:pre">		</span>// 排序

	for(temp=beg, High=Low; temp<=end; ++temp,High++){
		if(*temp == *High){
			cout<<*temp<<' ';
		}
	}
	cout<<endl;
	delete[] Low;
}
方法三:“查找表”法

构造一个“查找表” Min[n];对应位置上Min[i],存放了原数组A[i]位置往后这一部分的最小值。

一个变量Max,保存了在遍历A[n]时,遇到的最大值。

遍历A[n],如果 A[i]>=Max (比前面的数都大),并且 A[i] <= Min[i] (比后面的数都小),输出A[i].

void LookupWay(int *beg, int *end){
	if(beg == end){
		cout<<*beg<<end;
		return;
	}

	int Size = end-beg+1;
	int *Min = new int[Size];
	int *pcur, *pM;

	*(Min+Size-1) = *end;
	for(pcur=end-1, pM=Min+Size-2; pcur>=beg; --pcur, --pM){
		*pcur<*(pM+1)? *pM=*pcur : *pM=*(pM+1);		// 构造“查找表”
	}

	int Max=*beg;
	for(pcur=beg, pM=Min; pcur<=end; ++pcur, ++pM){
		if(*pcur > Max){					// 修改“当前对象前面部分的最大值”
			Max = *beg;
		}
		if(*pcur >= Max && *pcur <= *pM){		// 判断是否符合条件
			cout<<*pcur<<' ';
		}
	}
	cout<<endl;

	delete[] Min;
}

四:快速搜索法

在数组中,找到最小值的地址(指针、索引)MinIndex,则

1、如果MinIndex 指向最后一个元素,则原数组中所有元素均不满足,return;

2、如果MinIndex 指向第一个元素,则第一个元素满足要求,输出。

3、如果MinIndex 指向中间的某个元素,则对后半部分,递归进行上面的过程。

在上述算法中,需要设置一变量Max,保存MinIndex 前面一部分的最大值。

下面是算法的实现,已经将递归算法改为循环了。

int *FindMax(int *beg, int *end){
	int *Index = beg;
	int *temp;
	for(temp = beg; temp <=end; ++temp){
		if(*temp >= *Index){
			Index = temp;
		}
	}
	return Index;
}
int *FindMin(int *beg, int *end){
	int *Index = beg;
	int *temp;
	for(temp = beg; temp <=end; ++temp){
		if(*temp <= *Index){
			Index = temp;
		}
	}
	return Index;
}
void QuickWay(int *beg, int *end, int Max=0xf0000000){<span style="white-space:pre">	</span>//Max 最大值初始化为最大负数值
	if((beg == end)&&(*beg >= Max)){
		cout<<*beg<<endl;
		return;
	}	
	int *MaxIndex, *MinIndex;
	while(true){
		MinIndex = FindMin(beg,end);<span style="white-space:pre">		</span>// 找到最小值的索引
		MaxIndex = FindMax(beg, MinIndex);<span style="white-space:pre">	</span>// 找到MinIndex 前面一部分的最大值
		if(*MaxIndex > Max){
			Max = *MaxIndex;
		}
		if(end == MinIndex ){<span style="white-space:pre">			</span>// MinIndex 指向最后一个元素时,就可以break了,但最后一个元素也可能符合要求
			if(*end >= Max){
				cout<<*end;
			}
			break;
		}
		else if((beg == MinIndex)&&(*MinIndex >=Max)){<span style="white-space:pre">		</span>// MinIndex 指向第一个元素,如果它比Max大,则符合要求
			cout<<*MinIndex<<' ';
		}
		beg = MinIndex + 1;
	}
	cout<<endl;
}

方法空间复杂度时间复杂度(最好)时间复杂度(平均)时间复杂度(最坏)
暴力搜索O(1)O(N^2)O(N^2)O(N^2)
排序辅助法O(N)O(N)O(NlogN)O(N^2)
查找表O(N)O(N)O(N)O(N)
快速搜索O(1)O(N)O(NlogN)O(N^2)




相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页