for 循环为何可恨?


Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。

不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://justjavac.com/other/2012/05/15/whats-wrong-with-the-for-loop.html]:

我不知道,有些人这么着急的要把 for 循环消灭掉,他们反对的究竟是什么? 这已经不是第一次或第二次计算机学界的理论家们起来反对 for 循环(或类似的东西)了。

如果只说Elliotte质疑不起眼的闭包的价值,这是不公平的。 他主要抱怨是,在读了另一位著名人物、获得过Jolt 大奖并创造过最高销售记录的《Better, Faster, Lighter Java》的 作者Bruce Tate的最近的关于此主题的专题后, 他看不出闭包在Java中有什么价值。

(Bruce用Ruby做的例证):

表 1. 最简单的闭包

3.times {puts "Inside the times method."}

结果:
Inside the times method.
Inside the times method.
Inside the times method.

times是3这个对象上的一个方法。 它把闭包中的代码执行了3次。{puts "Inside the times method."}是闭包。 它是一个匿名函数,把它传入times方法,打印出静态句子。 相比起传统的for循环语句,这样的代码显得更紧凑,更简单,如表2中所示:

表 2: 非闭包的循环

for i in 1..3
  puts "Inside the times method."
end

由于这种毫无生气的对闭包的介绍,我也很难看出它的真正价值。 这首个比较,充其量也就能体现出一种微妙的差别。 Bruce在developerWorks上的文章里的其它的例子也大多是价值不大的,要么含糊不清,要么缺乏启发意义。

对于这种Ruby风格的闭包给Elliotte带来的困惑,我不打算进一步评论; 对这种问题过于挑剔毫无意义。

我也不想讨论目前的关于Java中的闭包的语法的提议的争论,包括Java中是否应该有闭包这样的大问题。 在这样的争论中我没有立场,说实话,我是不在乎这些问题如何或何时被解决。

虽然如此,Elliotte却提出了一个重要的问题:for 循环为什么可恨?

下面是一个常见的例子:

double sum = 0;
for (int i = 0; i < array.length; i++) {
  sum += array[i];
}

这有什么问题? 我编了很多年的程序,我对这种语法一眼扫过去很舒服;很显然,它是把一个数组里的值加到一起。

但当去真正的阅读这段代码时,这四行代码里大概散布着30多个标记符号需要我去分析处理。 不错,有些字符可以通过语法简写方式来缩减。 但为了这样一个简单的加法,你需要写出一堆东西,还要保证写的正确。

凭什么这样说?下面是Elliotte的文章里另外一个例子,原文拷贝:

String s = "";
for (int i = 0; i < args.length; i++) {
  s += array[i];
}

看见了里面的错误吗? 如果这代码编译通过,并通过的代码审查,你可能需要数周才会发现这样的bug,再数周才能制作出补丁。 这些只是简单的for循环。

想象一下,当for循环体变得越来越大,甚至有嵌套时,事情会变得多么的复杂。 (如果你仍旧不担心这样的bug,认为这只是拼写错误,那么你就想想有多少次在for循环里你是这样的。)

如果你能够把一个简单的for循环写成一行,带有更少的重复和更少的字符,这样不仅更容易阅读,也更容易书写。 因为这样更简洁,引入bug的机会就更少,当bug出现时,也更容易被发现。

那闭包对此有何帮助?下面是第一个例子,用Haskell语言写成的:

total = sum array

哈哈,我是在说谎。sum函数并没有使用闭包。 它是按照fold的方式定义的,而fold是接受闭包的:

total = foldl (+) 0 array

下面是第二个例子,很常见,而且使用了闭包:

s = concat array
s = foldr (++) [] array

我承认,使用这些叫做foldl 和 foldr 样子古怪的函数来解释闭包的作用,这对那些更熟悉for循环的程序员来说没有多大意义。 但是,这几个函数却能突出for循环的关键弊端:它把三种独立不同的操作合并到一起了——过滤,归纳和转换。

上面的这两种for循环,它们的目标是接收一个数值列表,把它们归纳成一个值。 函数式编程的程序员称这些操作为“folds(合并)”。

一个fold运算的过程是,首先要有一个操作(一个闭包)和一个种子值,还有使用list里的第一个元素。 这个操作被施加到种子值和list里的第一个元素上,产生出一个新的种子值。 fold运算然后把这个操作运用到新种子值和list里的下一个元素上,一直这样,直到最后一个值,最后一次操作的结果成为fold运算的结果。

下面是一个演示:

s = foldl (+) 0       [1, 2, 3]
  = foldl (+) (0 + 1) [2, 3]
  = foldl (+) 1       [2, 3]
  = foldl (+) (1 + 2) [3]
  = foldl (+) 3       [3]
  = foldl (+) (3 + 3) []
  = foldl (+) 6       []
  = 6

Haskell语言里提供了很多fold函数;foldl函数从list的第一位开始运算,依次反复到最后一个,而foldr函数,它从list的最后一个函数开始运算,从后往前。 还有很多其它相似的函数,但这两个是最基本的。

当然,folds是一些非常基本的运算,如果抛弃for循环而以各种形式的foldl 和 foldr 咒符来替换,你会很困惑。

事实上,更高级的操作,例如sum, prod 和 concat都是以各种folds定义的。 当你的代码以这种高级的归纳操作运算来编写时,代码会变得更简洁,更易读,更易写,更易懂。

当然,并不是所有的for循环都是归纳操作。看看下面这个:

for (int i = 0; i < array.length; i++) {
  array[i] *= 2;
}

这是一个转换操作,函数式编程的程序员称之为map操作:

new_array = map (*2) array

map函数的工作方式是,它会检查list里的每个元素,将一个函数应用到每个元素上,形成一个新的list,里面是新的元素。 (有些语言里的这种操作是原位替换)。 这是一个很容易理解的操作。sort函数的功能相似,它接受一个list,返回(或修改)一个list。

第三种类型的for循环是过滤。

下面是个例子。

int tmp[] = new int[nums.length];
int j = 0;
for (int i = 0; i < nums.length; i++) {
  if ((nums[i] % 2) == 1) {
    tmp[j] = nums[i];
    j++;
  }
}

这是一个非常简单的操作,但使用了for循环和两个独立的计数器后,毫无必要的复杂表现把事实真相完全掩盖了。 如果过滤是一种基本的操作,它应该像一个fold或一个map那样,而事实上,它是的:

odds = filter (\i => (i `mod` 2) == 1) nums
odds = filter isOdd nums -- 更常用的形式

从核心上讲,这就是为什么for循环有问题:它把(至少)三种独立的操作合并到了一起, 但重点却关注了一个次要细节问题:遍历一系列的值。

而事实上,fold,map 和 filter是处理一个数据list的三种不同的操作,它们应该被分别处理。 采用把闭包传入循环内的方式,我们能更容易的把what 从 how 中分离出来。 每次遍历一个list时我都会使用一个匿名函数,或复用通用的函数(例如 isOdd, (+) 或 sqrt)。

虽然闭包并不是一个很深奥的概念,但当它深深的烙进了一种语言和它的标准库中时,我们不需要使用这些低级的操作搞的代码混乱不堪。 相反,我们可以创建更高级的运算,做我们想要的事,比如sum 和 prod。

更重要的,以这些概念思考问题会使我们更容易思考更复杂的操作,比如变换一个tree,过滤一个vector,或把一个list合并成一个hash。

在最后,Elliotte还提到了一些关于在多核处理器上并行执行的问题,说像3.times 这样的代码会比 for 循环效率“差”。

不幸的是,我想他没说到点上。不错,有一些运算需要序列化,有一些可以并行。 但是如果你只基于一个for循环,很难判断出哪些归为哪类,这是一个复杂的编译器优化问题。 如果你把一个可能进行并行运算的操作(例如map 和 filter)分解成连续的运算(例如foldl 和 foldr),编译器更容易从中做出判断。

不仅如此,如果你比编译器更了解你的数据,你可以显式的要求一个map操作被顺序执行或并行执行。

本文英文原文链接:What’s Wrong with the For Loop

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值