以模6加法群(Z6,+)认识循环群及其特点

 刚开始接触循环群不容易理解,不妨以模6加法群<Z6,+>入手,来认识循环群的特点。

首先,循环群,顾名思义,cycle group即带有循环的意思。怎么个循环法呢?

我们看<Z6,+>中的元素{0,1,2,3,4,5}。取其中的元素1,不停地对自身进行模6加法,即对本身进行幂运算。

可得:

1^1=1

1^2=1+1=2

1^3=1+1+1=3

1^4=1+1+1+1=4

1^5=1+1+1+1+1=5

1^6=1+1+1+1+1+1=0(模6加法意义下)

1^7=1+1+1+1+1+1+1=1(模6加法意义下)

……

如上对1不断幂运算,可见两个现象:

1、可以遍历所有的元素,也可以说,我们仅用元素1就能生成所有的元素,这就是循环群里的生成元的概念。

2、幂运算的结果就是123450123450123450这样不断的循环,这就是循环群名字由来。

现在有了感性认识,可以对循环群用准确的数学语言定义,就是:

若存在a∈G使得G=<a>,则称G是循环群,称a为G的生成元。

现在,我们继续思考,如果对其它元素进行不断的幂运算呢,会出现什么结果?

经过不断的幂运算,我们发现

元素0形成的结果只有0,可写成,结果集合为{0},

元素2、4形成的结果是一样的,结果集合为{0,2,4},

元素3形成的结果集合为{0,3},

元素1、5形成的结果为{0,1,2,3,4,5},

可见,不同的元素,有的形成的结果不同,有的却相同。我们可以按照他们生成的结果来将他们划分为不同的群体。

对于元素1、5,他们都能生成所有元素,所以他们两个元素不仅证明了这个群是循环群,还说明他们都是循环群的生成元。

他们生成了{0,1,2,3,4,5}这个子群(或者说群本身,也叫平凡子群)并且他们都是6阶元素,所谓6阶,就是a^6=e=0(幺元,或称单位元,这个群的单位元是0)。6阶也是这个群的阶数。

对于元素2、4,他们生成了子群{0,2,4},他们都是3阶元素。

对于元素3,生成了子群{0,3},他是2阶元素。

对于元素0,生成了子群{0},他是1阶元素。

通过对上面的观察,我们又看出一些规律,就是:

1、n阶元素生成的子群中具有n个元素

2、一个n阶群,他具有p个不同类型的生成子群,p是n的正因子个数,比如本例中6的正因子有1,2,3,6共四个。

3、一个n阶群,他的生成元个数是与小于n且与n互为素数的个数。本例中,小于6且与6互素的数是1、5,共两个,所以这个群的生成元就正好2个。

以上规律均可证明,有兴趣可以自己进行证明,深入学习。

证明有限循环群同构于n的加法Zn: 假设G是一个有限循环群,生成元为a,|G|=k。那么,对于任意一个元素g∈G,都可以表示为a^m,其中0≤m<k。因此,我们可以定义一个映射f:G→Zn,使得f(a^m)=m(mod n),其中n=k。此时,我们需要证明这个映射是一个同构映射。 首先,我们证明这个映射是一个同态映射。对于任意的a^m和a^n,我们有: f(a^m+a^n)=f(a^(m+n))=m+n(mod n)=f(a^m)+f(a^n)(mod n) 因此,这个映射是一个同态映射。 其次,我们证明这个映射是一个满射。对于任意一个元素m∈Zn,我们可以找到一个元素a^m∈G,使得f(a^m)=m(mod n)。因此,这个映射是一个满射。 最后,我们证明这个映射是一个单射。如果对于不同的元素a^m和a^n,有f(a^m)=f(a^n),那么m=n(mod n),因此a^(m-n)是G的一个非零元素,但它的阶k不能整除n。这与n=k矛盾,因此这个映射是一个单射。 综上所述,这个映射是一个同构映射,因此有限循环群同构于n的加法Zn。 证明无限循环群同构于整数加法Z: 假设G是一个无限循环群,生成元为a。那么,对于任意一个元素g∈G,都可以表示为a^m,其中m是整数。因此,我们可以定义一个映射f:G→Z,使得f(a^m)=m。此时,我们需要证明这个映射是一个同构映射。 首先,我们证明这个映射是一个同态映射。对于任意的a^m和a^n,我们有: f(a^m+a^n)=f(a^(m+n))=m+n=f(a^m)+f(a^n) 因此,这个映射是一个同态映射。 其次,我们证明这个映射是一个满射。对于任意一个整数m∈Z,我们可以找到一个元素a^m∈G,使得f(a^m)=m。因此,这个映射是一个满射。 最后,我们证明这个映射是一个单射。如果对于不同的元素a^m和a^n,有f(a^m)=f(a^n),那么m=n,因此a^(m-n)是G的一个非零元素。由于G是无限循环群,a^(m-n)的阶不可能有限,因此m-n=0,即m=n。因此,这个映射是一个单射。 综上所述,这个映射是一个同构映射,因此无限循环群同构于整数加法Z。 同态同构kerf的定义: 设f:G→H是一个的同态映射,其中G和H是两个。我们定义ker(f)为G的一个子,使得ker(f)={g∈G|f(g)=e},其中e是H的单位元。此时,我们称G和ker(f)同态同构。
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值