通过Adaboost算法训练生成强分类器的过程。强分类器的生成需要进行T轮迭代。
1. 给定的训练样本集为S,总计N个样本,X和Y分别对应的是正样本(人脸样本)和负样本(非人脸样本);T为进行训练的循环次数。
2. 初始化样本额权重为1/N,即为训练样本的初始概率分布;
3. 第一次迭代训练N个样本,得到第一个最优弱分类器
4. 提高上一轮中被误判的样本权重,得到一个新的样本(权重不一样)
5. 将新的样本进行新一轮的训练。
6. 循环执行4—5步骤,T轮后得到T个最优弱分类器。
7. 组合T个最优弱分类器得到最终的强分类器。