基于ARM11的嵌入式人脸识别系统的设计与实现——笔记二

通过引入积分图的概念大大加速人脸特征值的计算。

通过Adaboost算法训练生成强分类器的过程。强分类器的生成需要进行T轮迭代。

1.      给定的训练样本集为S,总计N个样本,X和Y分别对应的是正样本(人脸样本)和负样本(非人脸样本);T为进行训练的循环次数。

2.      初始化样本额权重为1/N,即为训练样本的初始概率分布;

3.      第一次迭代训练N个样本,得到第一个最优弱分类器

4.      提高上一轮中被误判的样本权重,得到一个新的样本(权重不一样)

5.      将新的样本进行新一轮的训练。

6.      循环执行4—5步骤,T轮后得到T个最优弱分类器。

7.      组合T个最优弱分类器得到最终的强分类器。

 

                

            

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值