LDA学习心得

本文介绍了如何通过线性判别分析(LDA)进行类别区分,包括类内及类间离散度的计算,并给出了求解最优投影方向的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

根据符号说明可得类i的样本均值为:

 …………………………………………………………………… (1)

同理我们也可以得到总体样本均值:

………………………………………………………………………… (2)

根据类间离散度矩阵和类内离散度矩阵定义,可以得到如下式子:

  ……………………………………………… (3)

http://hi.csdn.net/attachment/201004/11/47140_1270987769CK7K.png…………………………………… (4)

求W方法有两种

(1)

Fisher鉴别准则表达式:

求W使类内离散度最小,类间离散度最大

(2)

引入损失函数

表示LDA投影到w后的损失函数:

image

代入化简也可化为fisher鉴别表达式的形式,再利用拉格朗日子乘法(分母限制长度为1?),对W求导

 

最终都得到表达式Sbα=λSwα

解特征向量即为所求W

 

### TF-IDF与LDA在文本处理和主题建模中的关系 #### 背景介绍 TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于衡量词语重要性的权重方案,在信息检索领域被广泛应用。它通过计算某个词项在一个文档中的频率以及该词在整个语料库中的逆文档频率来评估其重要性[^1]。 另一方面,LDA(Latent Dirichlet Allocation)是一种概率主题模型,旨在发现大规模文本集合中的潜在主题结构。LDA假设每篇文档是由多个主题混合而成,并且每个主题由一组单词分布定义[^3]。 尽管两者的目标不同——TF-IDF主要用于特征提取而LDA专注于主题建模——它们可以相互补充并结合使用于文本分析任务中。 --- #### 结合方式及其应用 ##### 1. 使用TF-IDF作为输入预处理方法 在构建LDA模型之前,可以通过TF-IDF对原始文本数据进行加权转换。这一步骤有助于减少高频但无意义的停用词的影响,从而提高后续主题建模的质量。具体来说: - **优势**: 高频低价值词汇会被赋予较低权重,使得更具有区分度的术语更容易影响最终的主题分配。 - **实现过程**: - 计算每个词项的TF-IDF分数; - 将这些分数映射到稀疏矩阵形式; - 把此矩阵传递给LDA算法以训练模型。 以下是基于Python的一个简单示例代码片段展示如何利用`sklearn`库完成上述操作: ```python from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import LatentDirichletAllocation # 假设corpus是一个包含多篇文章字符串列表 vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, stop_words='english') tfidf_matrix = vectorizer.fit_transform(corpus) lda_model = LatentDirichletAllocation(n_components=10, random_state=42) topics_distribution = lda_model.fit_transform(tfidf_matrix) ``` 此处,`TfidfVectorizer`负责生成经过TF-IDF调整后的向量表示;随后将其送入`LatentDirichletAllocation`类实例化对象执行实际学习流程。 --- ##### 2. 利用TF-IDF筛选关键词辅助解释LDA结果 当获得一系列抽象话题之后,可能还需要进一步简化表达以便人类理解。此时可借助先前得到的TF-IDF得分挑选出最能代表各主题的核心词汇组合起来形成易于解读的形式。 例如对于某特定主题t_i而言,选取前k个最高分对应的词条构成标签集{w_ik},这样既保留了原生统计特性又增强了直观感受效果. --- ##### 3. 性能优化考虑因素 需要注意的是并非所有场景下都适合采用这种方式联合运用两种技术手段。因为如果初始资料本身已经过良好清洗并且具备较强内在规律,则单纯依赖LDA往往能够取得不错成效无需额外引入复杂机制增加负担; 反之则反之. 另外参数调节也是不可忽视的一环比如设置合适的ngram范围或者控制最大最小df阈值等等都会直接影响到最后呈现出来的质量好坏程度不一.[^4] --- ### 示例总结说明 综上所述可以看出合理搭配TF-IDF同LDA一起工作不仅可以有效提升整体表现水平而且还能带来诸多附加好处诸如增强鲁棒性和可控性等方面均有体现值得深入探索研究下去寻找更多可能性空间拓展边界限制条件下的最佳实践路径方向指引未来发展方向趋势预测前景展望规划蓝图构想愿景目标设定里程碑事件标记时间节点安排进度计划表制定实施方案细则规定规章制度建立标准体系框架搭建平台架构设计开发工具软件编写程序脚本制作教程指南撰写论文报告发表学术文章分享经验心得交流心得体会互相促进共同成长进步发展变化创新变革突破传统局限开拓新兴领域挖掘潜力资源最大化利用效率效益双丰收双赢局面达成共识统一意见协调行动一致步调整齐划一向前迈进不断超越自我追求卓越成就非凡事业创造辉煌业绩载入史册流芳百世万古流传永垂不朽! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值