机器学习实战学习笔记-KNN算法

1.KNN算法介绍。

KNN算法即k~近邻算法,通过计算测试数据与已知分类的样本数据集的相似度,选择相似度最高的前k条数据。统计k个数据中分类出现最高的分类,做为测试数据的分类。


2.算法特点

优点:精度高、对异常值不敏感 缺点:时间复杂度和空间复杂度高   适用数据:数据型和标称型


下面的相似度计算采用欧式距离:

两个n维向量x(x1,x2,...,xn),y(y1,y2,...,yn)的欧式距离公式 



用Java实现KNN算法

首先定义用于存储数据的结点Node类,包含三个属性,1.样本数据属性 2.距离 3.分类类型。Node实现了Comparable接口,方便后续的求最相似的k条数据记录;给出了calDistance方法,用于计算结点间的距离。

</pre><pre name="code" class="java">package KNN;

import java.util.List; 
public class Node implements Comparable<Node> { 
	private List<Double> data;
	private double distance;
	private int type;
	public Node() {
		super();
		// TODO Auto-generated constructor stub
	}
	public Node(List<Double> data, double distance, int type) {
		super();
		this.data = data;
		this.distance = distance;
		this.type = type;
	}
	public List<Double> getData() {
		return data;
	}
	public void setData(List<Double> data) {
		this.data = data;
	}
	public double getDistance() {
		return distance;
	}
	public void setDistance(double distance) {
		this.distance = distance;
	}
	public int getType() {
		return type;
	}
	public void setType(int type) {
		this.type = type;
	}
	public int compareTo(Node arg0) {
		if(this.distance>=arg0.getDistance())
			return 1;
		else
			return -1; 
	}
	
	public double calDistance(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值