机器学习笔记-Java实现
文章平均质量分 85
风-之-谷
这个作者很懒,什么都没留下…
展开
-
机器学习实战学习笔记-决策树
1.决策树算法介绍: 决策树是一种监督学习算法,使用样本数据针对数据属性建立决策树模型,根据决策树对测试数据进行分类。2.决策树的特点: 决策树的计算法负责读不高,输出易于理解,但是可能会出现过度匹配的问题,适用于数值型和标称型数据。3.决策树的构造: 1. 采用递归的方式,在当前数据集上选择一个特征,针对该特征对数据集进行划分为几个原创 2016-08-22 18:46:14 · 511 阅读 · 2 评论 -
机器学习实战学习笔记-KNN算法
1.KNN算法介绍。KNN算法即k~近邻算法,通过计算测试数据与已知分类的样本数据集的相似度,选择相似度最高的前k条数据。统计k个数据中分类出现最高的分类,做为测试数据的分类。2.算法特点优点:精度高、对异常值不敏感 缺点:时间复杂度和空间复杂度高 适用数据:数据型和标称型下面的相似度计算采用欧式距离:两个n维向量想x(x1,x2,...,xn),y(y1,原创 2016-08-21 16:58:18 · 520 阅读 · 0 评论