hdu 1018 big number (求N!的位数)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1018


Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 25856    Accepted Submission(s): 11743

Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
 
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 10 7 on each line.
 
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
 
Sample Input
      
      
2 10 20
 
Sample Output
      
      
7 19
 


求n!的位数,转化成求log10(n!)的问题;

1,直接求解,log10(n!)=log10(1)+log10(2)+...+log10(n)

2,利用斯特林公式 : log10(n!)=1.0/2*log10(2*pi*n)+n*log10(n/e)

3,打表


不用公式的 :900ms+;

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main()
{
    int n;
    scanf("%d",&n);
    while(n--)
    {
        int a;
        scanf("%d",&a);
        double sum = 0 ;
        int i;
        for(i=1;i<=a;i++)
            sum += log10(i);
        printf("%d\n",(int)(sum+1));
    }
    return 0;
}

用公式求的:0ms;

#include <stdio.h>
#include <math.h>
#define E 2.71828182845904523536028747135266250
#define PI 3.141592654

int main()
{

    int n;
    scanf("%d",&n);
    while(n--)
    {
        int a;
        scanf("%d",&a);
        double sum =(double) 0.5*log10(2*PI*a)+a*log10(a*1.0/E);
        printf("%d\n",(int)(sum+1));
    }
    return 0;
}


打表:

#include<stdio.h>
int main()
{
	int n,m,i,bit=1;
	double num=0;
	scanf("%d",&n);
	while(n--)
	{
		bit=1,num=1;
		scanf("%d",&m);
		for(i=2;i<=m;i++)
		{//num只是转化为整数部分有1位,其余的都在小数部分,防止方法溢出
			num*=i;
			if(num<10){continue;}
			if(num<100){num/=10;bit+=1;continue;}
			if(num<1000){num/=100;bit+=2;continue;}
			if(num<10000){num/=1000;bit+=3;continue;}
			if(num<100000){num/=10000;bit+=4;continue;}
			if(num<1000000){num/=100000;bit+=5;continue;}
			if(num<10000000){num/=1000000;bit+=6;continue;}
			if(num<100000000){num/=10000000;bit+=7;continue;}
		}
		printf("%d\n",bit);
	}
	return 0;
}




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园建设方案旨在通过融合先进技术,如物联网、大数据、人工智能等,实现校园的智能化管理与服务。政策的推动和技术的成熟为智慧校园的发展提供了基础。该方案强调了数据的重要性,提出通过数据的整合、开放和共享,构建产学研资用联动的服务体系,以促进校园的精细化治理。 智慧校园的核心建设任务包括数据标准体系和应用标准体系的建设,以及信息化安全与等级保护的实施。方案提出了一站式服务大厅和移动校园的概念,通过整合校内外资源,实现资源共享平台和产教融合就业平台的建设。此外,校园大脑的构建是实现智慧校园的关键,它涉及到数据中心化、数据资产化和数据业务化,以数据驱动业务自动化和智能化。 技术应用方面,方案提出了物联网平台、5G网络、人工智能平台等新技术的融合应用,以打造多场景融合的智慧校园大脑。这包括智慧教室、智慧实验室、智慧图书馆、智慧党建等多领域的智能化应用,旨在提升教学、科研、管理和服务的效率和质量。 在实施层面,智慧校园建设需要统筹规划和分步实施,确保项目的可行性和有效性。方案提出了主题梳理、场景梳理和数据梳理的方法,以及现有技术支持和项目分级的考虑,以指导智慧校园的建设。 最后,智慧校园建设的成功依赖于开放、协同和融合的组织建设。通过战略咨询、分步实施、生态建设和短板补充,可以构建符合学校特色的生态链,实现智慧校园的长远发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值