中南大学第三届ACM竞赛 E题 五一步行街购物(dp)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013739363/article/details/39779017

Problem E: 五一步行街购物

Time Limit: 2 Sec  Memory Limit: 128 MB
Submit: 9  Solved: 5
[Submit][Status][Web Board]

Description

五一劳动节到了,焦同学要陪女朋友去步行街购物,但是五一去步行街购物的人相当多,大街上、商店里到处都是人,相当拥挤。焦同学想节省购物时间,不愿陪女朋友在街上来回走动,所以他计划一直从街头走向街尾,沿途所经过的商店里如果有他女朋友所需的商品,他就可以考虑购买。现在焦同学手上有份购物清单,并且也有份关于步行街旁各商店所出售的商品的名称及价格的详单。因为要买的东西太多,为避免买漏了东西,现在他计划按照购物清单上的顺序,依次购买各个物品,并且还要使总的费用最小。请问如何设计才能帮助焦同学实现他的计划。 为方便起见,用数字来代替商品的名称。关于详单上的记录,是按照各商店在步行街上的位置的先后关系依次给出各商店所出售的某种商品的名称及价格(对于每个商店仅给出一种所出售的物品的名称及价格,可以认为该商店只有这一种商品可以出售)。举个例子,下面的图一表示购物清单的内容,图二表示详单的内容(S1表示街头处的商店,Sn表示街尾处的商店)。 购物清单 2 2 5 1 图一 商店 S1 S2 S3 S4 S5 S6 S7 S8 商品 2 3 2 5 2 5 4 1 价格 50 80 40 60 42 65 100 30 图二

Input

有多组测试数据。对于每一组测试数据,第一行有两个数字M和N,M (1 ≤ M ≤ 100)表示购物清单上需要购买的商品的数量,N(1 ≤ N ≤ 100000)表示详单上商店的数量,接下来一行为M个整数,依次表示购物清单上的物品名称,再接下来有N行,每行有两个整数,其中第i行第一个数字表示商店Si所出售物品的名称,第二个数字表示商店Si所出售物品的价格。当M=N=0时表示输入结束。

Output

对于每组测试数据,如果能帮完成购物计划,则输出完成购物计划最少需要的费用,若不能完成购物计划,则输出“Impossible”。

Sample Input

4 8
2 2 5 1
2 50
3 80
2 40
5 60
2 42
5 65
4 100
1 30
2 3
3 2
1 200
2 300
3 100
0 0

Sample Output

177
Impossible

解题思路:本题主要考察动态规划算法。用dp[i][j]表示到第i个商店时购买到购物清单上第j个物品的情况(等于-1表示不能购买到购物清单上第j个物品)。这样dp[i][]就表示到第i个商店时完成的购买情况。对于dp[i][j],如果num[i] == list[j],且dp[i-1][j-1]!=-1,则有转移方程:dp[i][j] = min(dp[i -1][j -1]+price[i] , dp[i-1][j])。表示到第i个商店时购买购物清单上第j个物品时最小总花费dp[i][j]是从dp[i -1][j -1]+price[i] 和dp[i-1][j]l两者当中取较小的值。该动态规划算法的时间复杂度是O(nm) 。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>

using namespace std;
struct Shop
{
    int k,pri;
};

int min(int a,int b)
{
    if(a<b)
        return a;
    return b;
}

int dp[100005][105];

int main()
{
   // freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n,m;
    Shop node[100005];
    int a[105];
    while(scanf("%d %d",&n,&m)&&(n+m))
    {
        memset(dp,-1,sizeof(dp));
        for(int i=1; i<=n; i++)
            scanf("%d",a+i);
        for(int i =1; i<=m; i++)
            scanf("%d %d",&node[i].k,&node[i].pri);

        for(int i=0; i<=m; i++)
            dp[i][0]=0;

        for(int i=1; i<=m; i++)
        {
            for(int j=1; j<=n; j++)
            {
                if(node[i].k==a[j]) //相等
                {
                    if(dp[i-1][j-1]!=-1)//和前一个商品相同并且有多余的
                    {
                        if(dp[i-1][j]!=-1)//有前序状态则求最小,无则加上该商品的价值
                        {
                            //printf("dp==%d\n",dp[i-1][j-1]);
                            dp[i][j]=min(dp[i-1][j-1]+node[i].pri,dp[i-1][j]);
                        }
                        else
                            dp[i][j]=node[i].pri+dp[i-1][j-1];
                    }
                }
                else
                    dp[i][j]=dp[i-1][j];//不需要该物品则直接是前序状态
            }
        }
        /*for(int i=0;i<=m;i++)
        {
            for(int j=0;j<n;j++)
                printf("%d ",dp[i][j]);
            printf("\n");
        }*/
        if(dp[m][n]==-1)
            printf("Impossible\n");
        else
        printf("%d\n",dp[m][n]);

    }
    return 0;
}



阅读更多 登录后自动展开
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页