【codevs1869】硬币购物,背包+神奇的容斥原理

硬币购物 2008年
时间限制: 1 s
空间限制: 256000 KB
题目等级 : 大师 Master
题解
题目描述 Description
一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。 每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。

输入描述 Input Description
第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s

输出描述 Output Description
每次的方法数

样例输入 Sample Input
1 2 5 10 2
3 2 3 1 10
1000 2 2 2 900

样例输出 Sample Output
4
27

数据范围及提示 Data Size & Hint

di,s<=100000
tot<=1000


UPD 2017.1.3
典型的背包问题,但由于数量太大,复杂度为 O(sdi) ,所以不能直接dp
不过物品种类比较少,只有四种,所以我们可以把问题写成这个样子
求下面关于 xi 的方程的解的个数
c1x1+c2x2+c3x3+c4x4=s
其中 xidi
这几乎和容斥中的经典问题——“求未知数有上界限制的方程解个数”一模一样
所以我们可以套容斥试试
先求出 xi 没有限制下方程的非负整数解
这就相当于是一个完全背包
枚举 {xi} 的子集,把上界限制转化成下界限制 xidi+1 ,然后再做完全背包
利用容斥加减一下就出来了
代码:

#include<cstdio>
#define LL long long 
using namespace std;
int tot,c[5],d[5],s;
LL f[100005],ans;
void dfs(int x,int y,int sum)
{
    if (sum<0) return;
    if (x>4)
    {
        if (y&1) ans-=f[sum];
        else ans+=f[sum];
        return;
    }
    dfs(x+1,y,sum);
    dfs(x+1,y+1,sum-c[x]*(d[x]+1));
}
main()
{
    for (int i=1;i<=4;++i) scanf("%d",c+i);
    scanf("%d",&tot);
    f[0]=1;
    for (int i=1;i<=4;++i)
        for (int j=c[i];j<=100000;++j)
            f[j]+=f[j-c[i]];
    while (tot--)
    {
        ans=0;
        for (int i=1;i<=4;++i) scanf("%d",d+i);
        scanf("%d",&s);
        dfs(1,0,s);
        printf("%lld\n",ans);
    }
} 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值