FP-growth高效频繁项集发现

  FP-growth

  算法优缺点:

  优点:一般快于Apriori

  缺点:实现比较困难,在某些数据上性能下降

  适用数据类型:标称型数据

  算法思想:

  FP-growth算法是用来解决频繁项集发现问题的,这个问题再前面我们可以通过Apriori算法来解决,但是虽然利用Apriori原理加快了速度,仍旧是效率比较低的。FP-growth算法则可以解决这个问题。

  FP-growth算法使用了频繁模式树(Frequent Pattern Tree)的数据结构。FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成。所谓前缀树,是一种存储候选项集的数据结构,树的分支用项名标识,树的节点存储后缀项,路径表示项集。

  FP-growth算法生成频繁项集相对Apriori生成频繁项集的主要好处就是速度快,能快到几个数量级;另一个好处就是用FP树存储数据可以减少存储空间,因为关联挖掘的数据集往往是重复性很高的,这就能带来很高的压缩比。

  算法可以分成一下几个部分:

  构建FP树

  首先我们要统计出所有的元素的频度,删除不满足最小支持度的(Apriori原理)

  然后我们要根据频度对所有的项集排序(保证我们的树是最小的)

  最后根据排序的项集构建FP树

  从FP树挖掘频繁项集:

  生成条件模式基

  生成条件FP树

  算法的执行过程这篇文章有个很好的示例程序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值