poj 3311 状态压缩dp

【题目大意】
	类似于TSP问题,只是每个点可以走多次,比经典TSP问题不同的是要先用弗洛伊的预处理一下两两之间的距离。        求最短距离。
【解析】
	可以用全排列做,求出一个最短的距离即可。或者用状态压缩DP.用一个二进制数表示城市是否走过

【状态表示】
	dp[state][i]表示到达i点状态为state的最短距离

【状态转移方程】
	dp[state][i] =min{dp[state][i],dp[state'][j]+dis[j][i]} dis[j][i]为j到i的最短距离

【DP边界条件】
	dp[state][i] =dis[0][i]  state是只经过i的状态

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <deque>
#include <queue>
#include <stack>
#define inf 11111111

using namespace std;
int n,ans;
int dp[13][1<<13];
int dis[13][13];
int main()
{
    int i,j,k,l,m;
    while(cin >> n, n)
    {
        for (i = 0; i <= n; i++)
        {
            for (j = 0; j <= n; j++)
            {
                cin >> dis[i][j];
            }
        }
        for (i = 0; i <= n; i++)
        {
            for (j = 0; j <= n; j++)
            {
                for (k = 0; k <= n; k++)
                {
                    if(dis[j][k] > dis[j][i] + dis[i][k])
                       dis[j][k] = dis[j][i] + dis[i][k];
                }
            }
        }

        int s;
        for (s = 0; s <= (1<<n)-1; s++)
        {
            for (i = 1; i <= n; i++)
            {
                if (s&(1<<(i-1)))
                {
                    if(s==(1<<(i-1)))
                        dp[i][s] = dis[0][i];
                    else
                    {
                        dp[i][s] = inf;
                        for (j = 1; j <= n; j++)
                        {
                            if (s&(1<<(j-1))&&j!=i)
                            {
                                dp[i][s] = min(dp[i][s],dp[j][s-(1<<(i-1))]+dis[j][i]);
                            }
                        }
                    }
                }
            }
        }
        ans = dp[1][(1<<n)-1] + dis[1][0];
        for (i = 2; i <= n; i++)
        {
            ans = min(ans, dp[i][(1<<n)-1]+dis[i][0]);

        }
        cout<<ans<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值