【题目大意】
类似于TSP问题,只是每个点可以走多次,比经典TSP问题不同的是要先用弗洛伊的预处理一下两两之间的距离。 求最短距离。
【解析】
可以用全排列做,求出一个最短的距离即可。或者用状态压缩DP.用一个二进制数表示城市是否走过
【状态表示】
dp[state][i]表示到达i点状态为state的最短距离
【状态转移方程】
dp[state][i] =min{dp[state][i],dp[state'][j]+dis[j][i]} dis[j][i]为j到i的最短距离
【DP边界条件】
dp[state][i] =dis[0][i] state是只经过i的状态
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <string>
#include <deque>
#include <queue>
#include <stack>
#define inf 11111111
using namespace std;
int n,ans;
int dp[13][1<<13];
int dis[13][13];
int main()
{
int i,j,k,l,m;
while(cin >> n, n)
{
for (i = 0; i <= n; i++)
{
for (j = 0; j <= n; j++)
{
cin >> dis[i][j];
}
}
for (i = 0; i <= n; i++)
{
for (j = 0; j <= n; j++)
{
for (k = 0; k <= n; k++)
{
if(dis[j][k] > dis[j][i] + dis[i][k])
dis[j][k] = dis[j][i] + dis[i][k];
}
}
}
int s;
for (s = 0; s <= (1<<n)-1; s++)
{
for (i = 1; i <= n; i++)
{
if (s&(1<<(i-1)))
{
if(s==(1<<(i-1)))
dp[i][s] = dis[0][i];
else
{
dp[i][s] = inf;
for (j = 1; j <= n; j++)
{
if (s&(1<<(j-1))&&j!=i)
{
dp[i][s] = min(dp[i][s],dp[j][s-(1<<(i-1))]+dis[j][i]);
}
}
}
}
}
}
ans = dp[1][(1<<n)-1] + dis[1][0];
for (i = 2; i <= n; i++)
{
ans = min(ans, dp[i][(1<<n)-1]+dis[i][0]);
}
cout<<ans<<endl;
}
}