POJ3692 最大点权独立集元素个数

题意:
     n个男孩和m个女孩,给你他们谁和谁彼此了解,问你要找到一个集合,使得这个集合中的男孩和女孩相互了解,并且人数最多。


思路:

     简单题目,其实就是在求最大点权独立集元素个数,先说下点券独立集的概念,就是给你一些关系,让你找到一个最大的集合,使得集合中的任意两个人之间都不会有关系,用的是匈牙利算法,对于这个题目我们可以吧不了解的连接到一起,这样得到的就是集合中任意两人都了解的最大人数了,最大点券独立集元素个数 = n + m - 最大匹配数。


#include<stdio.h>
#include<string.h>

#define N_node 200 + 10
#define N_edge 40000 + 20

typedef struct
{
   int to ,next;
}STAR;

STAR E[N_edge];
int list[N_node] ,tot;
int map[N_node][N_node];
int mk_dfs[N_node] ,mk_gx[N_node];

void add(int a ,int b)
{
   E[++tot].to = b;
   E[tot].next = list[a];
   list[a] = tot;
}

int DFS_XYL(int s)
{
   for(int k = list[s] ;k ;k = E[k].next)
   {
       int to = E[k].to;
       if(mk_dfs[to]) continue;
       mk_dfs[to] = 1;
       if(mk_gx[to] == -1 || DFS_XYL(mk_gx[to]))
       {
           mk_gx[to] = s;
           return 1;
       }
   }
   return 0;
}

int main ()
{
   int n ,m ,k ,i ,j;
   int a ,b ,cas = 1;
   while(~scanf("%d %d %d" ,&n ,&m ,&k) && n + m + k)
   {
      memset(map ,0 ,sizeof(map));
      for(i = 1 ;i <= k ;i ++)
      {
         scanf("%d %d" ,&a ,&b);
         map[a][b] = 1;
      }
      memset(list ,0 ,sizeof(list));
      tot = 1;
      for(i = 1 ;i <= n ;i ++)
      for(j = 1 ;j <= m ;j ++)
      if(!map[i][j]) add(i ,j);
      memset(mk_gx ,255 ,sizeof(mk_gx));
      int sum = 0;
      for(i = 1 ;i <= n ;i ++)
      {
         memset(mk_dfs ,0 ,sizeof(mk_dfs));
         sum += DFS_XYL(i);
      }
      printf("Case %d: %d\n" ,cas ++ ,m + n - sum);
   }
   return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值