hdu2155 小黑的镇魂曲(dp)

题意:
                            小黑的镇魂曲


Problem Description
这个事情发生在某一天,当小黑和SSJ正在约会的时候,邪恶的Guner抓走了SSJ,小黑伤心万分,怒不可遏啊!但是他显然也是没有办法的,谁叫Guner比小黑邪恶,小黑打不过Guner呢!于是,小黑利用皮肤保护色,趁夜摸黑前往Guner的城堡,准备偷偷摸摸的把SSJ拯救出来,但是只要小黑一打开SSJ身上的锁链,看门的葱头就会在M秒以内通知Guner,Guner马上超时空转移,闪到小黑身边抓住他们,于是小黑虽然跑得不快,但是他也不得不跑啊。由于Guner的城堡构造特殊,它是由一个一个的平台搭建成的,所以小黑的逃跑路线是这样
的,在时刻0的时候,他位于最高点,也就是高于所有的平台,然后他开始垂直下落,他的下落速度是1米/秒。当小黑下落到某个平台上时,他可以向左跑也可以向右跑,他的跑动速度还是1米/秒。当小黑又处于平台边缘的时候,他开始继续下落。但是小黑是个怜香惜玉的人,为了顾及怀中的SSJ,于是他每次下落的最大高度不会超过MAX米,不然SSJ摔坏了,Guner也懒得追了,小黑也会伤心致死的。但是只要小黑抱着SSJ一落到地面,Guner就再也抓不住他们了。



Input
第一行输入一个数T(0 < T <= 10),表示测试数据的组数。每组测试数据的第一行是5个整数,N,X,Y,MAX,M,用空格分开。N(0 < N <= 1000)是台阶的数目,X,Y分别是小黑0时刻所在位置的横、纵坐标,MAX表示小黑最多能下落的高度,M表示从小黑一打开锁链葱头发觉后报告给Guner的时间,接下来有N行数据,每行数据描述一个台阶,包括3个数据,Xl[i],Xr[i],H[i],其中Xl[i](0 < Xl[i] <= 1000)表示当前台阶最左边的边的X坐标,Xr[i](0 < Xr[i] <= 1000)表示当前台阶最右边的边的X坐标,H[i](0 < H[i] < 1000)表示当前台阶
离地面的高度。数据确保小黑和SSJ是能到达地面的。
 
Output
每组测试数据当Guner能抓住小黑和SSJ时,输出YES,否则输出NO.
 
Sample Input
1
1 10 17 20 20
1 8 7
 
Sample Output
NO


思路:

      哎!这个题目敲了60多遍,有点伤心了,当时想的是用最短路,因为是1000*1000的坐标,最多也就是1000*1000那么多的点,然后是边,边也没有多少,估计大约600多万,建边的话,对于每一个下降,我都建3条边,当前点到下落点,下落点到下落边的左端点,下落点到下落边的右端点(注意一个点下落最多降落在一条边上,因为无法传过边),把能下落的点都mark上,最后在吧所有没mark并且能到达地面的和地面连接一条边,跑起点到地面的最短路,结果wa了好多次,后来wa的我自己都蒙了,以为是什么重边啊什么的(蒙圈了),最后用的dp过的,哎!真心不明白自己的最短路那个地方错了,这个题目要是用dp还是很同一弄的,和刚接触dp时的那个数塔差不多,对于每一条边,我们用他的做端点(和右端点)更新下面的可达边的左右端点的最优值,dp[i][0]表示的是第i条边的做端点的最优,dp[i][1]表示的是i条边右端点的最优,然后就往下更新就行了,记住一点就是一个点下落对多只能降落到一条边上,所以先sort下,然后第一次降落之后就break,具体看代码吧。


#include<stdio.h>
#include<string.h>
#include<algorithm>

#define N 1100
#define INF 1000000000

using namespace std;

typedef struct
{
   int l ,r ,h;
}NODE;

NODE node[N];
int dp[N][2];

bool camp(NODE a ,NODE b)
{
   return a.h > b.h;
}

int minn(int x ,int y)
{
   return x < y ? x : y;
}

bool solve(int n ,int maxx ,int t)
{
   for(int i = 1 ;i <= n ;i ++)
   dp[i][0] = dp[i][1] = INF;
   dp[1][0] = dp[1][1] = 0;
   sort(node + 1 ,node + n + 1 ,camp);
   for(int i = 1 ;i <= n ;i ++)
   {
      for(int j = i + 1 ;j <= n ;j ++)
      {
        if(node[i].h - node[j].h > maxx) break;
        if(node[i].l >= node[j].l && node[i].l <= node[j].r)
        {    
            if(j == n)
            {
               dp[j][0] = minn(dp[j][0] ,dp[i][0] + node[i].h);
               dp[j][1] = minn(dp[j][1] ,dp[i][0] + node[i].h);
            }
            else
            {
               dp[j][0] = minn(dp[j][0] ,dp[i][0] + (node[i].h - node[j].h) + (node[i].l - node[j].l));
               dp[j][1] = minn(dp[j][1] ,dp[i][0] + (node[i].h - node[j].h) + (node[j].r - node[i].l));
            }
            break;
         }
      }    
      
      for(int j = i + 1 ;j <= n ;j ++)
      {
        if(node[i].h - node[j].h > maxx) break;
        if(node[i].r >= node[j].l && node[i].r <= node[j].r)
        {
            if(j == n)
            {
               dp[j][0] = minn(dp[j][0] ,dp[i][1] + node[i].h);
               dp[j][1] = minn(dp[j][1] ,dp[i][1] + node[i].h);
            }
            else
            {
               dp[j][0] = minn(dp[j][0] ,dp[i][1] + (node[i].h - node[j].h) + (node[i].r - node[j].l));
               dp[j][1] = minn(dp[j][1] ,dp[i][1] + (node[i].h - node[j].h) + (node[j].r - node[i].r));
            }
            break;
         }
      } 
   }
   return dp[n][0] <= t || dp[n][1] <= t;
}

int main ()
{
   int n ,x ,y ,max ,t ,T ,i;
   scanf("%d" ,&T);
   while(T--)
   {
      scanf("%d %d %d %d %d" ,&n ,&x ,&y ,&max ,&t);
      node[1].l = node[1].r = x ,node[1].h = y;
      for(i = 1 ;i <= n ;i ++)
      scanf("%d %d %d" ,&node[i+1].l ,&node[i+1].r ,&node[i+1].h);
      n += 2;
      node[n].l = 0 ,node[n].r = 1001 ,node[n].h = 0;
      if(solve(n ,max ,t)) printf("NO\n");
      else printf("YES\n");
   }
   return 0;
}

 
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值