黑马程序员学习笔记——关于时间复杂度计算2

---------------------- ASP.Net+Unity开发.Net培训、期待与您交流! ----------------------



O(1)

Temp=i;i=j;j=temp;                    

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)

O(n^2)

2.1.
交换ij的内容
     sum=0
                (一次)
    for(i=1;i<=n;i++)      
n次)
        for(j=1;j<=n;j++)
n^2次)
         sum++
      n^2次)
解:T(n)=2n^2+n+1 =O(n^2)

2.2.   
    for (i=1;i<n;i++)
    {
       y=y+1;        
   
        for(j=0;j<=(2*n);j++)    
          x++;       
      
    }         
解:语句1的频度是n-1
         
语句2的频度是(n-1)*(2n+1)=2n^2-n-1
         f(n)=2n^2-n-1+(n-1)=2n^2-2
         
该程序的时间复杂度T(n)=O(n^2).         

O(n)      
                                                      
2.3.
    a=0;
   b=1;                     

    for (i=1;i<=n;i++)

    {  
       s=a+b;
   
       b=a;
       
       a=s;
     
    }
解:语句1的频度:2,        
          
语句2的频度:n,        
         
语句3的频度:n-1,        
         
语句4的频度:n-1,    
         
语句5的频度:n-1,                                  
         T(n)=2+n+3(n-1)=4n-1=O(n).
                                                                                                 
O(log2n )

2.4.
     i=1;      

    while (i<=n)
       i=i*2;

解:语句1的频度是1,  
         
设语句2的频度是f(n),  则:2^f(n)<=n;f(n)<=log2n    
         
取最大值f(n)=log2n,
          T(n)=O(log2n )

O(n^3)

2.5.
    for(i=0;i<n;i++)
    {  
       for(j=0;j<i;j++)  
       {
          for(k=0;k<j;k++)
            x=x+2;  
       }
    }
解:当i=m, j=k的时候,内层循环的次数为ki=m, j 可以取0,1,...,m-1 ,所以这里最内循环共进行了0+1+...+m-1=(m-1)m/2次所以,i0取到n,则循环共进行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以时间复杂度为O(n^3).
                                  

我们还应该区分算法的最坏情况的行为和期望行为。如快速排序的最坏情况运行时间是 O(n^2),但期望时间是 O(nlogn)。通过每次都仔细地选择基准值,我们有可能把平方情况 (O(n^2)情况)的概率减小到几乎等于 0。在实际中,精心实现的快速排序一般都能以 (O(nlogn)时间运行。

下面是一些常用的记法

访问数组中的元素是常数时间操作,或说O(1)操作。

一个算法如果能在每个步骤去掉一半数据元素,如二分检索,通常它就取 O(logn)时间。strcmp比较两个具有n个字符的串需要O(n)时间。

常规的矩阵乘算法是O(n^3),因为算出每个元素都需要将n对元素相乘并加到一起,所有元素的个数是n^2

指数时间算法通常来源于需要求出所有可能结果。

例如,n个元素的集合共有2n个子集,所以要求出所有子集的算法将是O(2n)的。

:-D指数算法一般说来是太复杂了,除非n的值非常小,因为,在这个问题中增加一个元

素就导致运行时间加倍。不幸的是,确实有许多问题 (如著名的巡回售货员问题” ),到目

前为止找到的算法都是指数的。如果我们真的遇到这种情况,通常应该用寻找近似最佳结果

的算法替代之。

 

常见的时间复杂度,按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)

线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)k次方阶O(n^k)、指数阶O(2^n)

下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。

1、设三个函数f,g,h分别为f(n)=100n^3+n^2+1000 , g(n)=25n^3+5000n^2 , h(n)=n^1.5+5000nlgn
请判断下列关系是否成立:
1f(n)=O(g(n))
2g(n)=O(f(n))
3h(n)=O(n^1.5)
4h(n)=O(nlgn)
(1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。
2)成立。与上同理。
3)成立。与上同理。
4)不成立。由于当n→∞n^1.5nlgn递增的快,所以h(n)nlgn的比值不是常数,故不成立。

2、设n为正整数,利用大"O"记号,将下列程序段的执行时间表示为n的函数。
(1) i=1; k=0
while(i<n)
{ k=k+10*i;i++;
}
解答:T(n)=n-1T(n)=O(n)这个函数是按线性阶递增的。
(2) x=n; // n>1
while (x>=(y+1)*(y+1))
y++;
解答:T(n)=n1/2T(n)=O(n1/2),最坏的情况是y=0,那么循环的次数是n1/2次,这是一个按平方根阶递增的函数。
(3) x=91; y=100;
while(y>0)
if(x>100)
{x=x-10;y--;}
else x++;
解答: T(n)=O(1)这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n没有?没。这段程序的运行是和n无关的,就算它再循环一万年,我们也不管他,只是一个常数阶的函数。

一个经验规则
有如下复杂度关系

c< log2N < n < n * Log2N < n^2 < n^3 < 2^n < 3^n < n!

其中c是一个常量,如果一个算法的复杂度为c log2N n n*log2N ,那么这个算法时间效率比较高,如果是 2^n , 3^n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。








---------------------- ASP.Net+Unity开发.Net培训、期待与您交流! ----------------------详细请查看:http://edu.csdn.net

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值