电脑打开内存占用过高问题(开机85%【16G运存】)

本文介绍了一种解决电脑开机后内存占用过高的方法,通过关闭SysMain服务(或SuperFatch服务),有效缓解了内存压力。SysMain服务,即SuperFetch的升级版,旨在预加载常用应用以加速启动,但对SSD优化有限且占内存,禁用可优化内存使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开机之后的情况如下:

在这里插入图片描述
电脑开机自动登录qq之后,并无其他操作,但是内存瞬间达到了84%,然后屁颠屁颠的跑去下了个电脑管家,清了下垃圾,清了下内存什么的,一通下来,还是85%,,绝望了

解决办法(电脑并没中病毒,没有因为乱下载东西导致其他不必要进程占用内存的情况下)

windows+R —> 输入 services.msc, 打开服务管理
在这里插入图片描述
找到如下一个服务:sysMain
在这里插入图片描述
说明一下, 部分系统并没有,sysMain这个服务,是另外一个SuperFatch这个服务,功能和sysMain一模一样。
然后关闭这个服务,重启下电脑就可以了,【关闭之后需要重启,不然无效】,服务【属性】里面的【恢复】是否设置无操作不影响。

sysMain服务是什么?:
SysMain服务是1809之后的版本才有的,原来这个服务之前叫superfetch服务,
superfetch服务是“超级预读取”,这个服务是由XP系统中的Prefetch进化而来的。
这个原理也很简单:Superfetch 内存管理机制会将用户可能使用的应用程序页面利用内存可用空间进行预加载;
尽可能地避免系统发生从硬盘的页面调用,让应用程序最快速度开启。

但实际上,superfetch服务很占内存,并且对固态硬盘优化速度几乎没有,
所以我们可以禁用SysMain服务来解决开机内存占用过高的问题
遇到 "Failed to build numpy" 和 "ERROR: Could not build wheels for numpy" 这样的错误信息通常发生在尝试安装基于 `pyproject.toml` 的项目时,尤其是当你试图通过命令行使用 Python 包管理工具(如 `pip` 或 `conda`)进行安装而遇到了问题。 这个错误表明构建 `numpy` 库时出现了失败,原因可能是多种多样的,包括但不限于: 1. **依赖库缺失**:`numpy` 可能需要其他依赖库才能正常构建,但如果这些依赖库未安装或版本冲突,构建就会失败。 2. **系统环境问题**:在某些操作系统环境下,特别是那些支持虚拟化技术的系统(如 Docker、Windows Subsystem for Linux 等),路径管理或权限设置可能问题,影响到 `numpy` 的源代码获取或构建过程。 3. **Python 版本兼容性问题**:确保安装的 Python 版本与 `numpy` 的预期版本相匹配,因为 `numpy` 需要在特定的 Python 版本上行并构建。 4. **网络问题**:如果从远程仓库下载源代码或构建所需的包时遇到了连接问题,也可能导致构建失败。 解决此类问题的一般步骤如下: ### 解决方案 #### 使用预构建轮文件 如果你的目标平台支持从 PyPI 下载 `.whl` 文件,可以尝试直接使用预构建的轮文件进行安装: ```bash pip install numpy==<version_number> ``` 替换 `<version_number>` 为 `numpy` 库的当前稳定版本号。 #### 手动安装源码 如果预构建文件不可用或出现问题,你可以选择手动下载 `numpy` 的源代码,并自行编译安装: 1. 先从 GitHub 等来源下载 `numpy` 的最新源代码。 2. 安装必要的开发工具,例如 GCC(用于 C/C++ 编译)、Git 等。 3. 解压源码文件。 4. 进入解压缩后的目录,行 `python setup.py build` 来构建库。 5. 如果构建成功,执行 `python setup.py install` 将其安装至系统。 确保在每一步操作前检查系统依赖是否满足 `numpy` 的需求,并注意环境变量和路径的设置可能影响构建流程。 ### 相关问题: 1. **如何更新我的 Python 版本以兼容 numpy?** - 查看 numpy 的官方文档以了解它支持的 Python 版本范围,然后按照提示升级或降级 Python 到适当的版本。 2. **如果我的系统是虚拟机或容器,如何调整网络配置以解决构建问题?** - 对于使用 Docker 或类似工具的系统,检查防火墙设置和端口映射情况。有时,确保外部网络可达是解决问题的关键。 3. **为什么在 Windows 上安装 numpy 会遇到问题?** - 确保安装了 Visual Studio Build Tools 或 Microsoft SDKs,特别是适用于 C/C++ 开发的组件。此外,Windows 特有的环境变量设置也非常重要,比如确保正确设置了 PATH 变量等。
评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值