MIXUP INFERENCE: BETTER EXPLOITING MIXUP TO DEFEND ADVERSARIAL ATTACKS 论文阅读

MIXUP INFERENCE: BETTER EXPLOITING MIXUP TO DEFEND ADVERSARIAL ATTACKS (ICLR 2020)

1 介绍

将防御方法分类为两种

  • 推理阶段:加高斯噪声,图像非线性变换(不是足够可靠)
  • 训练阶段:对抗训练(对clean图像识别有影响,计算昂贵)

mixup training method 引入了globally linear behavior,同时提高了鲁棒性。尽管它的提高比起对抗训练方法不那么显著,mixup保持了在clean图像上的表现也更高效。

提出在推理阶段使用mixup,称为mixup inference(MI),每次都将输入x和一个干净样本x_s进行mixup,然后喂给分类器。

两个基本的鲁棒性提升机制

  • perturbation shrinkage 扰动收缩
  • input transfer 更多的随机性

2 前提

3 方法

Compared to passively defending adversarial examples by directly classifying them, it would be more effective to actively utilize the globality of mixup-trained models in the inference phase to break the locality of adversarial perturbations.

与通过直接分类来被动防御对抗性示例相比,在推理阶段主动利用mixup训练模型的全局性来打破对抗性扰动的局部性会更有效。

3.1 MIXUP INFERENCE

MI is a specialized inference principle for the mixup-trained models

考虑一个输入(x,y,z) 其中z未知

直接将x喂给分类器F可以得到预测的标签\hat{y}

1_{y\neq \hat{y} } = 1_{ z=1}

通用机制:

1 采样一个标签 y_{s} \sim p_{s}(y)

2 从p_{s} (x | y_{s} )采样一个x_{s},和x进行mixup得到 \tilde{x} = \lambda x + (1- \lambda ) x_{s}

3 重复执行对输出取平均

 

 

4 实验结果

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值