Unique Paths II

 

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.


class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid)
		{
			if (obstacleGrid.empty()) return 0;

			vector<int> dp(obstacleGrid[0].size(), 0);
			if (obstacleGrid[0][0] == 0)
				dp[0] = 1;

			for (int m = 0; m < obstacleGrid.size(); m++)
			{
				if (obstacleGrid[m][0] == 1)
					dp[0] = 0;
			
				for(int n = 1; n < obstacleGrid[0].size(); n++)
				{
					if (obstacleGrid[m][n] != 0)
						dp[n] = 0;
					else if(obstacleGrid[m][n-1] == 0)
						dp[n] += dp[n - 1];
				}
			}
			return dp[obstacleGrid[0].size() - 1];
		}
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值