Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid)
{
if (obstacleGrid.empty()) return 0;
vector<int> dp(obstacleGrid[0].size(), 0);
if (obstacleGrid[0][0] == 0)
dp[0] = 1;
for (int m = 0; m < obstacleGrid.size(); m++)
{
if (obstacleGrid[m][0] == 1)
dp[0] = 0;
for(int n = 1; n < obstacleGrid[0].size(); n++)
{
if (obstacleGrid[m][n] != 0)
dp[n] = 0;
else if(obstacleGrid[m][n-1] == 0)
dp[n] += dp[n - 1];
}
}
return dp[obstacleGrid[0].size() - 1];
}
};