隐含语义索引(Latent Semantic Indexing )

向量空间模型(Vector Space Model)

将文本看作是一个向量,向量中的每一维都代表某单词是否出现在文本中,使用向量空间模型的pca算法时并不做规约化,因为文本里的每一条不一定有同等的作用。向量空间中紧挨着的文本,我们认为他们讨论的是同一类的问题:


其中有三个基础的性质:

1.      d1挨着d2,那么d2挨着d1

2.      d1挨着d2,d2挨着d3,那么d1离d3不远

3.      d离d最近

向量d1与d2的距离由他们的夹角的余弦值决定:


以长度为标准来区分向量的每一个成分,我们使用2阶范数:


也就是讲向量映射到闭单位球里,然后:


所以更长的文本不会有更多的权重。

我们定义两个向量的相似度:


三角不等式:

在欧几里得空间:


但是在语义空间中这个法则不成立:



下面是三个例子:




当然,将高维的特征空间映射到低维的特征空间使用的依然是SVD,设计一个映射来反应低维空间的语义关联,然后再通过度量文本的相似度进行学习。一个例子来阐述隐含语义空间:


通过SVD,A的每一行每一列都映射到了k维的LSI空间了。我们的目标q也映射到这个空间里:


要注意q不是一个稀疏的向量。

下面是一个文档矩阵:


C = UΣVT,其中U Σ VT为:




降维之后:


原始矩阵C与降维之后的C2进行对比:


其中,d2与d3在原始空间的相似度为0,在降维空间的相似度为0.52 ∗ 0.28 + 0.36 ∗ 0.16 + 0.72 ∗ 0.36 + 0.12 ∗ 0.20 + −0.39 ∗ −0.08 ≈ 0.52

LSI提高了精度,然而却在否定句,布尔问句等问题中表现很差。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值