Burnside引理

定义

    设G={a1,a2,…ag}是目标集[1,n]上的置换群。每个置换都写成不相交循环的乘积。c1(ak) 是在置换ak的作用下不动点的个数,也就是长度为1的循环的个数。G将[1,n]划分成l个等价类,则: 等价类个数为: 
      

相关知识

  (这一段是百度上抄的。我才高一,个人认为现在看不懂很正常。)

给定一个集合G={a,b,c,…}和集合G上的二元运算,并满足:

(a) 封闭性:"a,bÎG,$cÎG, a*b=c。

(b) 结合律:"a,b,cÎG, (a*b)*c=a*(b*c)。

(c) 单位元:$eÎG,"aÎG, a*e=e*a=a。

(d) 逆元:"aÎG,$bÎG, a*b=b*a=e,记b=a-1。

则称集合G在运算*之下是一个群,简称G是群。一般a*b简写为ab。

置换

n个元素1,2,…,n之间的一个置换表示1被1到n中的某个数a1取代,2被1到n中的某个数a2取代,直到n被1到n中的某个数an取代,且a1,a2,…,an互不相同。

置换群

置换群的元素是置换,运算是置换的连接。例如可以验证置换群满足群的四个条件。

例子

例:一正方形分成4格,2着色,有多少种方案?其中,经过转动相同的图象算同一方案。

解:每个格子一共有两种颜色可以选择,所以共有右图16中图像。


对图中图像的置换可以分为以下四种:

不动:a1=(1)(2)…(16)

逆时针转90度 :a2=(1)(2)(3 4 5 6)(7 8 9 10) (11 12)(13 14 15 16)

顺时针转90度 :a3=(1)(2)(6 5 4 3)(10 9 8 7)(11 12)(16 15 14 13)

转180度:a4=(1)(2)(3 5)(4 6)(7 9)(8 10)(11)(12) (13 15)(14 16)

由Burnside引理,共有(16+2+2+4)/4=6(种方案)

由例子可见,Burnsid引理是针对图像集的转动群来求解,当多种颜色着色时,理论上可以用Burnside来求解,但是极其复杂,此时一般通过Pólya定理求解(具体关于Pólya定理的问题之后的文章中会讲)。

Burnsid引理是群论中的一个公式,bzoj 1004 cards好像就可以用。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值