wikioi 棋盘游戏

这个游戏在一个有10*10个格子的棋盘上进行,初始时棋子位于左上角,终点为右下角,棋盘上每个格子内有一个0到9的数字,每次棋子可以往右方或下方的相邻格子移动,求一条经过数字之和最小且经过0到9的所有数字的合法路径,输出其长度。(经过的数字包括左上角和右下角)

输入包含10行,每行10个数字,以空格隔开,表示棋盘格子上的权值。数据保证存在合法路径。

输出所求路径的权值和。

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 0

2 1 1 1 1 1 1 1 1 0

3 1 1 1 1 1 1 1 1 0

4 1 1 1 1 1 1 1 1 0

5 1 1 1 1 1 1 1 1 0

6 1 1 1 1 1 1 1 1 0

7 1 1 1 1 1 1 1 1 0

8 1 1 1 1 1 1 1 1 0

9 1 1 1 1 1 1 1 1 5

50


题解

基础状压dp,dfs可以忽略比较多的无用状态。值得庆祝的是,这是我没看题解想出来的。哭
注意S(大写)的范围不是(1<<11) -1而是(1<<10)-1。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstdlib>
#include<cmath>
#define S (1<<10)-1
using namespace std;
int map[12][12],f[12][12][S];
int xx[2]={0,1}, yy[2]={1,0};
bool pd(int x,int y,int z)
{
	if(x+xx[z]>10||x+xx[z]<=0||y+yy[z]>10||y+yy[z]<=0) return false;
	else return true;
}
void dfs(int x,int y,int s)
{
	for(int i=0;i<2;i++)
	   {if(pd(x,y,i))
	       {int h=x+xx[i], sh=y+yy[i], w=s|(1<<map[h][sh]); 
		    if(f[h][sh][w]>f[x][y][s]+map[h][sh])
			   {f[h][sh][w]=min(f[h][sh][w],f[x][y][s]+map[h][sh]);
		       dfs(h,sh,w);
		       }
		   }
	   }
}
int main()
{
	for(int i=1;i<=10;i++)
	for(int j=1;j<=10;j++)
	   scanf("%d",&map[i][j]);
	memset(f,127/3,sizeof(f));
	f[1][1][1<<map[1][1]]=map[1][1];
	dfs(1,1,1<<map[1][1]);
	printf("%d\n",f[10][10][S]);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值