题目描述 Description
这个游戏在一个有10*10个格子的棋盘上进行,初始时棋子位于左上角,终点为右下角,棋盘上每个格子内有一个0到9的数字,每次棋子可以往右方或下方的相邻格子移动,求一条经过数字之和最小且经过0到9的所有数字的合法路径,输出其长度。(经过的数字包括左上角和右下角)
输入描述 Input Description
输入包含10行,每行10个数字,以空格隔开,表示棋盘格子上的权值。数据保证存在合法路径。
输出描述 Output Description
输出所求路径的权值和。
样例输入 Sample Input
0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 0
2 1 1 1 1 1 1 1 1 0
3 1 1 1 1 1 1 1 1 0
4 1 1 1 1 1 1 1 1 0
5 1 1 1 1 1 1 1 1 0
6 1 1 1 1 1 1 1 1 0
7 1 1 1 1 1 1 1 1 0
8 1 1 1 1 1 1 1 1 0
9 1 1 1 1 1 1 1 1 5
样例输出 Sample Output
50
题解
基础状压dp,dfs可以忽略比较多的无用状态。值得庆祝的是,这是我没看题解想出来的。注意S(大写)的范围不是(1<<11) -1而是(1<<10)-1。#include<cstdio> #include<cstring> #include<iostream> #include<cstdlib> #include<cmath> #define S (1<<10)-1 using namespace std; int map[12][12],f[12][12][S]; int xx[2]={0,1}, yy[2]={1,0}; bool pd(int x,int y,int z) { if(x+xx[z]>10||x+xx[z]<=0||y+yy[z]>10||y+yy[z]<=0) return false; else return true; } void dfs(int x,int y,int s) { for(int i=0;i<2;i++) {if(pd(x,y,i)) {int h=x+xx[i], sh=y+yy[i], w=s|(1<<map[h][sh]); if(f[h][sh][w]>f[x][y][s]+map[h][sh]) {f[h][sh][w]=min(f[h][sh][w],f[x][y][s]+map[h][sh]); dfs(h,sh,w); } } } } int main() { for(int i=1;i<=10;i++) for(int j=1;j<=10;j++) scanf("%d",&map[i][j]); memset(f,127/3,sizeof(f)); f[1][1][1<<map[1][1]]=map[1][1]; dfs(1,1,1<<map[1][1]); printf("%d\n",f[10][10][S]); return 0; }