Clara算法的总结

CLARA算法是一种非监督学习的聚类方法,通过多次抽样和应用PAM算法找到最佳聚类。它从数据集中抽取样本,对每个样本执行PAM,选择最优的k个中心点,并计算总代价。在所有样本中,选取总代价最低的聚类结果作为最终输出。算法的时间复杂度为O(k * (n – k - 1) * (n – k)),适用于大型数据集。
摘要由CSDN通过智能技术生成

总结

一、步骤:

CLARA从数据集中抽取多个样本集,对每个样本集使用PAM,并以最好的聚类作为输出。

具体步骤:

1)  for i = 1 to v (选样的次数),重复执行下列步骤( (2) ~ (4) ) ;

2)  随机地从整个数据库中抽取一个 N (例如:(40 + 2 k))个对象的样本,调用PAM 方法从样本中找出样本的k 个最优的中心点。

3)  将这 k个中心点应用到整个数据库上,对于每一个非代表对象Oj,判断它与从样本中选出的哪个代表对象距离最近。

4)  计算(3)中得到的聚类的总代价。若该值小于当前的最小值,用该值替换当前的最小值,保留在这次选样中得到的k 个代表对象作为到目前为止得到的最好的代表对象的集合。

5)  返回到步骤(1) ,开始下一个循环。

算法结束后,输出最好的聚类结果。

 

二、代价计算

1.  找出样本中k个最优的中心点:

PAM 算法首先随机地选择了 k 个对象,然后用一个非选中对象0h 替换一个选中对象0i,然后为每一个非选中对象0j 计算代价Cjih ,将所有Cjih累加,得到用0h 替换0i的总代价TCjih。接下来用所有非代表点替换0i并计算出(n – k)个总代价。如果(n – k)个总代价中有小于零且绝对值最大则发生替换,如果(n – k)个总代价都大于零则不发生替换。继续对余下的代表点重复以上操作,最后得出此样本下的k个最优代表点。完成后,进行下一次抽样,并选出k个最有点。

 

注:根据0j 属于不同情况,Cji1 用不同的公式定义。

 

2. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值