总结
一、步骤:
CLARA从数据集中抽取多个样本集,对每个样本集使用PAM,并以最好的聚类作为输出。
具体步骤:
1) for i = 1 to v (选样的次数),重复执行下列步骤( (2) ~ (4) ) ;
2) 随机地从整个数据库中抽取一个 N (例如:(40 + 2 k))个对象的样本,调用PAM 方法从样本中找出样本的k 个最优的中心点。
3) 将这 k个中心点应用到整个数据库上,对于每一个非代表对象Oj,判断它与从样本中选出的哪个代表对象距离最近。
4) 计算(3)中得到的聚类的总代价。若该值小于当前的最小值,用该值替换当前的最小值,保留在这次选样中得到的k 个代表对象作为到目前为止得到的最好的代表对象的集合。
5) 返回到步骤(1) ,开始下一个循环。
算法结束后,输出最好的聚类结果。
二、代价计算
1. 找出样本中k个最优的中心点:
PAM 算法首先随机地选择了 k 个对象,然后用一个非选中对象0h 替换一个选中对象0i,然后为每一个非选中对象0j 计算代价Cjih ,将所有Cjih累加,得到用0h 替换0i的总代价TCjih。接下来用所有非代表点替换0i并计算出(n – k)个总代价。如果(n – k)个总代价中有小于零且绝对值最大则发生替换,如果(n – k)个总代价都大于零则不发生替换。继续对余下的代表点重复以上操作,最后得出此样本下的k个最优代表点。完成后,进行下一次抽样,并选出k个最有点。
注:根据0j 属于不同情况,Cji1 用不同的公式定义。
2.