hdu 5407 CRB and Candies

31 篇文章 0 订阅

题目:

CRB and Candies

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 652    Accepted Submission(s): 324


Problem Description
CRB has N different candies. He is going to eat K candies.
He wonders how many combinations he can select.
Can you answer his question for all K (0 ≤ K N )?
CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.
 

Input
There are multiple test cases. The first line of input contains an integer T , indicating the number of test cases. For each test case there is one line containing a single integer N .
1 ≤ T ≤ 300
1 ≤ N 106
 

Output
For each test case, output a single integer – LCM modulo 1000000007( 109+7 ).
 

Sample Input
  
  
5 1 2 3 4 5
 

Sample Output
  
  
1 2 3 12 10
 

Author
KUT(DPRK)
 

Source
 

Recommend
wange2014


题意:求出LCM{C(N,0),C(N,1),....,C(N,N)}%1000000007。

思路:打表找出前几项,然后在OEIS上发现LCM{C(N,0)...C(N,N)}=LCM(1,2,3,...,N)/N,所以我们只要求出LCM{1,2,3...,N},然后再除以n即可。算LCM的时候只要找出每个小于N的质数的次数最大值,然后把他们乘起来就可以了。除以n的时候由于要取模,所以变为乘以n对与mod的逆元。

代码:

#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include<climits>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
using namespace std;

#define PB push_back
#define MP make_pair

#define REP(i,x,n) for(int i=x;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define FORD(i,h,l) for(int i=(h);i>=(l);--i)
#define SZ(X) ((int)(X).size())
#define ALL(X) (X).begin(), (X).end()
#define RI(X) scanf("%d", &(X))
#define RII(X, Y) scanf("%d%d", &(X), &(Y))
#define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z))
#define DRI(X) int (X); scanf("%d", &X)
#define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
#define OI(X) printf("%d",X);
#define RS(X) scanf("%s", (X))
#define MS0(X) memset((X), 0, sizeof((X)))
#define MS1(X) memset((X), -1, sizeof((X)))
#define LEN(X) strlen(X)
#define F first
#define S second
#define Swap(a, b) (a ^= b, b ^= a, a ^= b)
#define Dpoint  strcut node{int x,y}
#define cmpd int cmp(const int &a,const int &b){return a>b;}

 /*#ifdef HOME
    freopen("in.txt","r",stdin);
    #endif*/
const int MOD = 1e9+7;
typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long LL;
typedef pair<int,int> PII;
//#define HOME

int Scan()
{
	int res = 0, ch, flag = 0;

	if((ch = getchar()) == '-')				//判断正负
		flag = 1;

	else if(ch >= '0' && ch <= '9')			//得到完整的数
		res = ch - '0';
	while((ch = getchar()) >= '0' && ch <= '9' )
		res = res * 10 + ch - '0';

	return flag ? -res : res;
}
/*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/



int vis[1000000+5];
int prime[1000000+5];
int cnt;
void getprime()
{
    cnt=0;
    MS0(vis);
    for(int i=2;i<=1000000;i++)
    {
     if(!vis[i])
            prime[cnt++]=i;
     for(int j=0;j<cnt&&prime[j]<=1000000/i;j++)
     {vis[prime[j]*i]=1;
     if(i%prime[j]==0)
        break;
    }
    }
}
long long inv(long long a,long long m)
{
    if(a==1)
        return 1;
    return inv(m%a,m)*(m-m/a)%m;
}
const int mod= 1e9+7;
int main()
{getprime();
int T;
RI(T);
while(T--)
{
    int n;
    RI(n);
    n++;
    int ans=1;
    for(int i=0;i<cnt&&prime[i]<=n;i++)
    {
        //int k=(int)(log10(n)/log10(prime[i])+0.5);
        int tmp=1;
        for(;(long long )tmp*prime[i]<=n;)
         tmp=((long long )tmp*prime[i])%mod;
        ans=((long long )ans*tmp)%mod;
    }
    ans=((ans*inv(n,mod))%mod+mod)%mod;
    printf("%d\n",ans);
}



        return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值