Island Loss

引言:
由于微妙的面部外观变化、头部姿势变化、光照变化和遮挡而引起的变化,在真实环境下的人脸表情识别性能显著降低。
本文提出了一种新的损失函数island loss,来提高深层学习特征的识别能力。减少类内差异,同时扩大类间差异。
IL-CNN 网络结构:
在这里插入图片描述
3个卷积层后接Prelu和BN,每一个bn的后面接一个MaxPooling,最终接入两个全连接层,softmax和Islandloss共同驱动最终的loss,采用sgd+momentum batch_size为300,weight_decay设置为0.05,每个全连接后接dropout层。

数据预处理
根据人脸特征点的位置,以双眼为中心,进行人脸对齐。人脸图像缩放到6060,同时,图像cropSize为4848,图像随机旋转-10°~10°,并进行水平flip,从而增加训练样本的数量.

损失函数:Island Loss
1.softmax loss
在这里插入图片描述
2.centerLoss,在softmax的基础上,新添加了一种loss:
在这里插入图片描述
给每个label的数据定义一个center,大家要向center靠近, c y i c_{y_{i}} cyi表示 y i y_{i} yi类别的特征中心。
因此整体的Loss为
在这里插入图片描述
3.IslandLoss ,在center loss的基础上,优化类间距离:
在这里插入图片描述
即每个类心求余弦距离,+1 使得范围为0-2,越接近0表示类别差异越大,从而优化Loss即使得类间距离变大。
4.CNN训练的整个损失函数为:
在这里插入图片描述
IslandLoss算法流程:
在这里插入图片描述
对比softmax loss 、center loss 、island loss 的特征图示:
在这里插入图片描述
在这里插入图片描述
对比不同损失函数的类内和类间距离:
在这里插入图片描述

总结:
作者在CenterLoss的基础上,提出了一个新的Loss,在关注类别的类内距离的同时,优化类间距离,使得每个类别拥有更大的margin,从而迫使网络能够学习到更具判别性的特征。


注:博众家之所长,集群英之荟萃。

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Peanut_范

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值