对于一个普通的数,判断它有多少位,我们只需多次除以10,直到商为小于一的小数,除了几个十,该数便是几位数。
假设2^N为k位数,则有不等式
2^N/10^k<1
所以,对2^N取以十为底的对数得k=N*log2
其中log2≈0.30103,
即,2^N有N*log2位数
例如,2^3有k=3*log2≈0.90309上取整得1位
2^4有k=4*log2≈1.204上取整得2位
对于一个普通的数,判断它有多少位,我们只需多次除以10,直到商为小于一的小数,除了几个十,该数便是几位数。
假设2^N为k位数,则有不等式
2^N/10^k<1
所以,对2^N取以十为底的对数得k=N*log2
其中log2≈0.30103,
即,2^N有N*log2位数
例如,2^3有k=3*log2≈0.90309上取整得1位
2^4有k=4*log2≈1.204上取整得2位