十三·列表的补充知识

不知道大家还记得,之前我们讲过的可变数据类型,还有不可变数据类型吗?如果忘了,可以再回顾一下系列第八章。

我们举例来说明一下,可变和不可变的运用。


不可变例子:

string_1 = "ABCDEF"

string_2 = string_1

print("变量string_1现在的值为:{}".format(string_1))

print("变量string_1的内存ID为:{}".format(id(string_1)))

print("变量string_2现在的值为:{}".format(string_2))

print("变量string_2的内存ID为:{}".format(id(string_2)))

string_2 = "123456"

print("分割线".center(33, "="))

print("变量string_1现在的值为:{}".format(string_1))

print("变量string_1的内存ID为:{}".format(id(string_1)))

print("变量string_2现在的值为:{}".format(string_2))

print("变量string_2的内存ID为:{}".format(id(string_2)))

结果为:

变量string_1现在的值为:ABCDEF

变量string_1的内存ID为:2691686984368

变量string_2现在的值为:ABCDEF

变量string_2的内存ID为:2691686984368

===============分割线===============

变量string_1现在的值为:ABCDEF

变量string_1的内存ID为:2691686984368

变量string_2现在的值为:123456

变量string_2的内存ID为:2691687039216

  • 在这个例子中,我们先声明赋值了一个变量string_1,我们可以说,变量string_1代表的内存ID为2691686984368
  • 然后又声明了一个变量string_2且把变量string_1赋值给了string_2,我们也可以认为,string_1把自己代表的内存ID也给了string_2,所以变量string_2代表的内存ID也为2691686984368
  • 接下来,我们又把“123456”这个新的字符串赋值给了变量string_2。
  • 因为字符串类型是不可变类型的,所以新的字符串“123456”的内存ID跟“ABCDEFG”的内存ID是不一样的(意思就是新建的不可变类型,要使用新的一段内存空间来存储新的数据)。所以“123456”的内存ID为2691687039216
  • 这就相当于,刚开始,string_1和string_2都代表着“ABCDEFG”,然后我们把string_2改为了“123456”。
  • 从结果上来看,string_2的修改不会影响到string_1的值。
  • 也就是说,在不可变数据类型中,其他变量的修改,不会影响到当前变量。

可变类型例子:

string_1 = ["A", "B", "C"]

string_2 = string_1

print("变量string_1现在的值为:{}".format(string_1))

print("变量string_1的内存ID为:{}".format(id(string_1)))

print("变量string_2现在的值为:{}".format(string_2))

print("变量string_2的内存ID为:{}".format(id(string_2)))

string_2.extend([1, 2, 3])

print("分割线".center(33, "="))

print("变量string_1现在的值为:{}".format(string_1))

print("变量string_1的内存ID为:{}".format(id(string_1)))

print("变量string_2现在的值为:{}".format(string_2))

print("变量string_2的内存ID为:{}".format(id(string_2)))

结果为:

变量string_1现在的值为:['A', 'B', 'C']

变量string_1的内存ID为:2330274451848

变量string_2现在的值为:['A', 'B', 'C']

变量string_2的内存ID为:2330274451848

===============分割线===============

变量string_1现在的值为:['A', 'B', 'C', 1, 2, 3]

变量string_1的内存ID为:2330274451848

变量string_2现在的值为:['A', 'B', 'C', 1, 2, 3]

变量string_2的内存ID为:2330274451848

  • 在这个例子中,我们先声明赋值了一个变量string_1,我们可以说,变量string_1代表的内存ID为2330274451848
  • 然后又声明了一个变量string_2且把变量string_1赋值给了string_2,我们也可以认为,string_1把自己代表的内存ID也给了string_2,所以变量string_2代表的内存ID也为2330274451848
  • 接下来,我们在string_2中新添加了几个元素[1,2,3]。
  • 如果按照之前的想法来说,修改变量string_2应该不影响string_1,对吧?这是不对的。
  • 因为列表为可变数据类型,所以列表的修改,不会再新建一个内存空间来存储值,而是在原有的内存ID代表的内存空间内进行修改。
  • 这就是为什么,我们修改了变量string_2的值,会影响到变量string的值。
  • 从内存ID上来看,我们也可以看出来,两个变量从头到尾,都是同一个内存ID。
  • 从结果上来看,string_2的修改会影响到string_1的值。
  • 也就是说,在可变数据类型中,其他变量的修改,会可能会影响到当前变量。

  • 既然可变类型的变量会出现这种情况,那么我们应该如果解决呢?
  • 大家可以再查看一下,上篇我们在讲列表的时候,列表有一个函数copy,是用来复制列表的
  • 它的具体含义,就是新建一个内存空间,把我们想要修改的变量复制一份
  • 这样我们再修改复制好的变量后,就不会影响到原来的变量了。

copy函数例子:

string_1 = ["A", "B", "C"]

string_2 = string_1.copy()

print("变量string_1现在的值为:{}".format(string_1))

print("变量string_1的内存ID为:{}".format(id(string_1)))

print("变量string_2现在的值为:{}".format(string_2))

print("变量string_2的内存ID为:{}".format(id(string_2)))

string_2.extend([1, 2, 3])

print("分割线".center(33, "="))

print("变量string_1现在的值为:{}".format(string_1))

print("变量string_1的内存ID为:{}".format(id(string_1)))

print("变量string_2现在的值为:{}".format(string_2))

print("变量string_2的内存ID为:{}".format(id(string_2)))

结果为:

变量string_1现在的值为:['A', 'B', 'C']

变量string_1的内存ID为:1927441043848

变量string_2现在的值为:['A', 'B', 'C']

变量string_2的内存ID为:1927441044360

===============分割线===============

变量string_1现在的值为:['A', 'B', 'C']

变量string_1的内存ID为:1927441043848

变量string_2现在的值为:['A', 'B', 'C', 1, 2, 3]

变量string_2的内存ID为:1927441044360

  • 从这个例子中,我们使用了copy函数,对变量string_1进行了复制,复制给了变量string_2
  • 我们再用id函数来查看内存id的时候,就会发现变量string_1的内存ID和变量string_2的内存ID是完全不一样的
  • 然后我们再修改变量string_2的值的时候,就不会影响到变量string_1了


  • 我们可以使用可变类型的这些特性来做一些事情
  • 不使用copy函数的时候的列表,我们可以认为是一条工厂流水线,两个工人一起在这条流水线上工作,这两个工人,都会影响到这条流水线上的产品
  • 使用copy函数后,就相当于两条流水线,两个工人各自负责一条流水线,不会互相影响。
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值