深度学习
文章平均质量分 75
陈纪建
关注行业动态,找出最适合自己的发展道路
展开
-
深度学习提高泛化能力的技术
LeetCode题目记录1.泛化能力(generalization)2.正则化(regularization)2.1 正则化方法1.泛化能力(generalization)对于模型,我们不仅要求它对训练数据集有很好的拟合(训练误差),同时也希望它可以对未知数据集(预测集)有很好的拟合结果(泛化能力),所产生的测试误差被称为泛化误差。度量泛化能力的好坏,最直观的表现就是模型的过拟合(overfitting)和欠拟合(underfitting)过拟合和欠拟合是用于描述模型在训练过程中的两种状态,转载 2021-10-20 11:31:13 · 2009 阅读 · 0 评论 -
正则化、交叉验证、泛化能力
一、正则化1、模型选择典型的方式就是正则化。正则化就是结构风险最小化策略的实现,就是在经验风险项中添加一个郑泽华想或者叫做惩罚项。正则化项与模型的关系一般是模型复杂度越高,正则化项的值就会越大。正则化项的作用就是平衡经验风险较小与模型复杂度较小。最好的结果就是经验风险和模型复杂度同时较小。正则化的一般形式为:其中,第一项为经验风险项,第二项为正则化项。值λ是为了调整两者关系的系数。二、交叉验证通常情况下,我们做模型选择的时候将数据分为训练集、验证集和测试集。但是实际应用中,...转载 2021-10-15 17:21:43 · 827 阅读 · 0 评论 -
深度学习专题学习路线及笔记
转载 2021-10-13 09:16:52 · 119 阅读 · 0 评论 -
梯度下降(Gradient Descent)数学原理分析与实例
本文循序渐进描述梯度下降算法,从导数的几何意义开始聊起,如果熟悉微积分可以跳过,主要内容如下:一. 导数的几何意义 二. 偏导数 三. 什么是梯度 四. 梯度下降算法 αα是什么含义? 为什么是−−? 梯度下降举例一 梯度下降举例二 值得关注的一些问题 五. 梯度下降应用于线性回归 5.1 批量梯度下降 5.2 批量梯度下降算法python实现 一. 导数的几何意义导数用来衡量函数对取值的微小变化有多敏感,如下图所示,假设有一辆汽车在行驶,s(t)s(t)..转载 2021-10-12 15:03:10 · 2390 阅读 · 0 评论 -
梯度下降算法(Gradient Descent)的原理和实现步骤
大部分的机器学习模型里有直接或者间接地使用了梯度下降的算法。虽然不同的梯度下降算法在具体的实现细节上会稍有不同,但是主要的思想是大致一样的。梯度下降并不会涉及到太多太复杂的数学知识,只要稍微了解过微积分里导数的概念,就足够完全理解梯度下降的思想了。梯度下降的目的绝大多数的机器学习模型都会有一个损失函数。比如常见的均方误差(Mean Squared Error)损失函数:(1)其中,表示样本数据的实际目标值,表示预测函数根据样本数据计算出的预测值。从几何意义上来说,它可以看成...转载 2021-10-12 11:45:02 · 10289 阅读 · 0 评论 -
神经网络参数梯度的计算方式
一、什么是梯度· 梯度的定义梯度是一个向量,是一个n元函数f关于n个变量的偏导数,梯度会指向各点处的函数值降低的方向。更严格的讲,梯度指示的方向是各点处的函数值减少最多的方向。为什么这么说,因为方向导数=cos(\theta)×梯度,而\theta是方向导数的方向和梯度方向的夹角。所以,所有的下降方向中,梯度方向下降的最多。二、梯度法· 什么是梯度法深度学习中, 神经网络的主要任务是在学习时找到最优的参数(权重和偏置),这个最优参数也就是损失函数最小时的参数。但是,一般情况下转载 2021-10-12 08:51:41 · 6757 阅读 · 1 评论 -
前向传播算法(Forward propagation)与反向传播算法(Back propagation)
项目github地址:bitcarmanlee easy-algorithm-interview-and-practice欢迎大家star,留言,一起学习进步虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解。因此特意先对深度学习中的相关基础概念做一下总结。先看看前向传播算法(Forward propagation)与反向传播算法(Back propagation)。1.前向传播如图所示,这里讲得已经很清楚了,前向传播的思想比较简单。举个例子,假设上转载 2021-10-11 17:42:56 · 1132 阅读 · 0 评论 -
卷积神经网络概念与原理
卷积神经网络概念与原理_yunpiao123456的专栏-CSDN博客_卷积神经网络转载 2021-10-08 08:16:55 · 118 阅读 · 0 评论 -
最清晰的讲解各种梯度下降法原理与Dropout
一、梯度法思想梯度法思想的三要素:出发点、下降方向、下降步长。机器学习中常用的权重更新表达式为:,这里的λ就是学习率,本文从这个式子出发来把机器学习中的各种“梯度”下降法阐释清楚。机器学习目标函数,一般都是凸函数,什么叫凸函数?限于篇幅,我们不做很深的展开,在这儿我们做一个形象的比喻,凸函数求解问题,可以把目标损失函数想象成一口锅,来找到这个锅的锅底。非常直观的想法就是,我们沿着初始某个点的函数的梯度方向往下走(即梯度下降)。在这儿,我们再作个形象的类比,如果把这个走法类比为力,那么完整..转载 2021-10-06 09:38:53 · 700 阅读 · 0 评论 -
神经网络的正向传播和反向传播(转)
反向传播:重点掌握链式法则(偏导的求法)感谢博主,以下计算参考链接:一文弄懂神经网络中的反向传播法——BackPropagation - Charlotte77 - 博客园****************************************************************************输入→卷积(激活函数)……→输出以上图为例,并赋值,分别计算正向传播和反向传播。(图中省略了激活函数sigmoid)。激活函数的公式如下:sigmod求导过程参转载 2021-10-03 16:03:37 · 1017 阅读 · 0 评论 -
一文详解神经网络与激活函数的基本原理
考虑以下分类问题:▲ 图1显然,该分类问题具有非线性的决策边界。如果不增加特征,采用线性核的 SVM(以下简称线性 SVM)和逻辑回归都无法拟合,因为它们只能得到形如的线性边界。一个可行的办法是增加高次方项作为特征输入,比如以作为线性 SVM 或逻辑回归输入,可以拟合形如的决策边界(实际上它可以拟合圆或椭圆),对于图 1 所示的例子这可能是不错的模型。然而,在实际案例中我们通常都无法猜到决策边界的“形状”,一是因为样本的特征数量很大导致无法可视化,二是其可能的特征组合很多。对于...转载 2021-10-03 08:19:57 · 592 阅读 · 0 评论 -
关于Mask-Rcnn中标注工具VIA(VGG Image Annotator)使用的详解
https://blog.csdn.net/weixin_44498476/article/details/90311063?utm_medium=distribute.pc_relevant_download.none-task-blog-2~default~BlogCommendFromBaidu~default-5.test_version_3&depth_1-utm_source=distribute.pc_relevant_download.none-task-blog-2~default转载 2021-07-27 08:47:48 · 951 阅读 · 0 评论 -
Ubuntu18.04源码编译安装gcc6.3.0(呕心沥血,各种坑)
由于需要在ubuntu18.04上用MATLAB2018b跑一个程序,需要gcc6.3.0编译相关代码,可是直接用apt-get install只能安装gcc6.5.0版本,所以需要用源代码编译。安装gcc之前要安装gmp,mpfr,mpc,isl这几个库,并且要卸载旧的gcc,然而我们需要在最后安装gcc之前再卸载旧的gcc,因为安装必需的库时需要旧的gcc。安装gmp在https://gmplib.org/下载最新的压缩包,解压到指定路径上,然后cd gmp-6.1.2/mkdir bu转载 2021-07-23 15:54:19 · 620 阅读 · 0 评论 -
ubuntu16.04Nvidia驱动、CUDA、cuDNN安装与卸载
(一)Nvidia驱动安装ubuntu 16.04默认已安装第三方驱动程序nouveau,首次安装nvidia显卡驱动首先需要禁用nouveau,不然会碰到冲突的问题,导致无法安装nvidia显卡驱动。1、打开blacklist.confsudo vim /etc/modprobe.d/blacklist.conf(若目录下没有blacklist.conf,则创建该文件)2、在blacklist.conf文件最后部分插入以下两行内容blacklist nouveauoptions转载 2021-07-22 15:18:46 · 889 阅读 · 0 评论 -
ubuntu16.04纯净版-安装Python3.8.1/升级pip
Ubuntu 16.04 amd64 (64bit)(纯净版)自带python2.7和python3.5执行"whereis python"查看当前安装的python[root@root ~]# whereis python python: /usr/bin/python2.7 /usr/bin/python /usr/lib/python2.7 /usr/lib64/python2.7 /etc/python /usr/include/python2.7 /usr/share/ma..转载 2021-06-22 21:59:27 · 476 阅读 · 0 评论 -
Linux安装Anaconda3完整教程
相关链接 官方安装Anaconda3教程 【手把手教你】如何在Linux系统搭建jupyter notebook CentOS8.2安装JupyterLab jupyter的安装扩展了nbextensions,解决了官网下载速度慢的问题,Jupyter 下载链接 Linux下远程访问Jupyter Notebook 配置 1. 安装Anaconda31.1 下载首先,打开官网地址下载最新版本的Anaconda3,然后再传输到远程的Linu转载 2021-06-16 15:09:36 · 4836 阅读 · 0 评论 -
Linux下安装tensorflow
环境准备下载anaconda, https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-x86_64.sh安装[root@localhost ~]# wget https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-x86_64.sh[root@localhost ~]# bash Anaconda3-2019.10-Linux-x86_64.sh12以上信息提示,都进行.转载 2021-06-16 08:57:57 · 720 阅读 · 0 评论 -
FCN的学习及理解(Fully Convolutional Networks for Semantic Segmentation)
大多数人接触"语义"都是在和文字相关的领域,或语音识别,期望机器能够识别你发出去的消息或简短的语音,然后给予你适当的反馈和回复。嗯,看到这里你应该已经猜到了,图像领域也是存在"语义"的。今天是AI大热年,很多人都关注与机器人的语音交互,可是有没有想过,将来的机器人如果不能通过图像来识别主人,家里的物品、宠物,那该多没意思。说近一些,假如扫地机器人能够机智地绕开你丢在地上的臭袜子而扫走旁边的纸屑,一定能为你的生活解决不少麻烦。没错,图像语义分割是AI领域中一个重要的分支,是机器视觉技术中关于图像理解的转载 2021-06-10 06:50:24 · 893 阅读 · 1 评论 -
dnn神经网络_OpenCv-C++-深度神经网络(DNN)模块-使用FCN模型实现图像分割
FCN是什么?中文名称是“全卷积网络”,它将传统CNN中的全连接层转化成一个个的卷积层。在传统的CNN结构中,前5层是卷积层,第6层和第7层分别是一个长度为4096的一维向量,第8层是长度为1000的一维向量,分别对应1000个类别的概率。如下图所示:实例:#include#include#includeusing namespace cv;using namespace std;using namespace cv::dnn;const size_t width = 5转载 2021-06-10 06:47:19 · 508 阅读 · 0 评论 -
目标检测、分割、识别、分类综述
近日 Visualead 研究主管 Eddie Smolyansky 在 Midum 网站撰文介绍视频目标分割的基础知识,从视频目标分割问题简介、数据集和 DAVIS 挑战赛入手,同时介绍了 Visualead 最新发布的视频数据集 GyGO 和 2016 年以来两种主要的视频目标分割方法:MaskTrack 和 OSVOS。DAVIS-2016 视频物体分割数据集中经过正确标注的几个帧本文介绍了视频目标分割问题和对应的经典解决方案,简要概括为:1. 问题、数据集和挑战赛;2. 我们.转载 2021-06-08 18:01:01 · 2452 阅读 · 0 评论 -
YoLov3目标检测代码C++版本运行
论文地址:[YOLO] [YOLOv2/YOLO9000] [YOLOv3] [YOLOv4]YOLO系列权重、配置文件下载地址:https://github.com/AlexeyAB/darknet代码解读:[Deep Learning based Object Detection using YOLOv3 with OpenCV ( Python / C++ ) ][中文翻译]代码下载:这边有一个可以运行YOLOv3、YOLOv4、YOLO-Fastest,YOLObile四种网络的[C++代码]转载 2021-06-07 14:56:06 · 1297 阅读 · 0 评论 -
零基础入门深度学习(1) - 感知器
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Cod...转载 2021-05-29 10:05:46 · 298 阅读 · 0 评论