全文翻译自15L大神
方案1:单线程
假设有个请求,这个请求服务端的处理需要执行3个很缓慢的IO操作(比如数据库查询或文件查询),那么正常的顺序可能是(括号里面代表执行时间):
a、读取文件1 (10ms)
b、处理1的数据(1ms)
c、读取文件2 (10ms)
d、处理2的数据(1ms)
e、读取文件3 (10ms)
f、处理3的数据(1ms)
g、整合1、2、3的数据结果 (1ms)
单线程总共就需要34ms。
package cn.bellychang.d0209;
public class NoConcurrence {
/**
* @param args
* @throws InterruptedException
*/
public static void main(String[] args) throws InterruptedException {
long start = System.currentTimeMillis();
int a,b,c;
//读取文件1
Thread.sleep(10L);
//处理1的数据
Thread.sleep(1L);
a = 1;
//读取文件2
Thread.sleep(10L);
//处理2的数据
Thread.sleep(1L);
b =1;
//读取文件3
Thread.sleep(10L);
//处理3的数据
Thread.sleep(1L);
//整合1、2、3的数据结果
Thread.sleep(1L);
c = 1;
int result = a + b + c;
long end = System.currentTimeMillis();
System.out.println(end - start);
}
}
方案2:如果你在这个请求内,把ab、cd、ef分别分给3个线程去做,就只需要12ms了。
package cn.bellychang.d0209;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
class ThreadA implements Callable<Integer> {
@Override
public Integer call() throws Exception {
// 读取文件1
Thread.sleep(10L);
// 处理1的数据
Thread.sleep(1L);
return 1;
}
}
class ThreadB implements Callable<Integer> {
@Override
public Integer call() throws Exception {
// 读取文件2
Thread.sleep(10L);
// 处理2的数据
Thread.sleep(1L);
return 1;
}
}
class ThreadC implements Callable<Integer> {
@Override
public Integer call() throws Exception {
// 读取文件2
Thread.sleep(10L);
// 处理2的数据
Thread.sleep(1L);
return 1;
}
}
public class ConcurenceForMultiCPU {
/**
* @param args
* @throws InterruptedException
* @throws ExecutionException
*/
public static void main(String[] args) throws InterruptedException, ExecutionException {
long start = System.currentTimeMillis();
ExecutorService exec = Executors.newCachedThreadPool();
Future<Integer> f = exec.submit(new ThreadA());
Future<Integer> g = exec.submit(new ThreadB());
Future<Integer> h = exec.submit(new ThreadC());
int result = f.get()+g.get()+h.get();
long end = System.currentTimeMillis();
System.out.println(end - start);
}
}
所以多线程不是没怎么用,而是,你平常要善于发现一些可优化的点。然后评估方案是否应该使用。
方案3:
假设还是上面那个相同的问题:但是每个步骤的执行时间不一样了。
a、读取文件1 (1ms)
b、处理1的数据(1ms)
c、读取文件2 (1ms)
d、处理2的数据(1ms)
e、读取文件3 (28ms)
f、处理3的数据(1ms)
g、整合1、2、3的数据结果 (1ms)
单线程总共就需要34ms。
package cn.bellychang.d0209;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
class ThreadA1 implements Callable<Integer> {
@Override
public Integer call() throws Exception {
// 读取文件1
Thread.sleep(1L);
// 处理1的数据
Thread.sleep(1L);
return 1;
}
}
class ThreadB1 implements Callable<Integer> {
@Override
public Integer call() throws Exception {
// 读取文件2
Thread.sleep(1L);
// 处理2的数据
Thread.sleep(1L);
return 1;
}
}
class ThreadC1 implements Callable<Integer> {
@Override
public Integer call() throws Exception {
// 读取文件2
Thread.sleep(28L);
// 处理2的数据
Thread.sleep(1L);
return 1;
}
}
public class ConcurenceForMultiCPU1 {
/**
* @param args
* @throws InterruptedException
* @throws ExecutionException
*/
public static void main(String[] args) throws InterruptedException, ExecutionException {
long start = System.currentTimeMillis();
ExecutorService exec = Executors.newCachedThreadPool();
Future<Integer> f = exec.submit(new ThreadA1());
Future<Integer> g = exec.submit(new ThreadB1());
Future<Integer> h = exec.submit(new ThreadC1());
int result = f.get()+g.get()+h.get();
long end = System.currentTimeMillis();
System.out.println(end - start);
}
}
如果还是按上面的划分方案(上面方案和木桶原理一样,耗时取决于最慢的那个线程的执行速度),在这个例子中是第三个线程,执行29ms。那么最后这个请求耗时是30ms。比起不用单线程,就节省了4ms。但是有可能线程调度切换也要花费个1、2ms。因此,这个方案显得优势就不明显了,还带来程序复杂度提升。不太值得。
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
那么现在优化的点,就不是第一个例子那样的任务分割多线程完成。而是优化文件3的读取速度。
可能是采用缓存和减少一些重复读取。
首先,假设有一种情况,所有用户都请求这个请求,那其实相当于所有用户都需要读取文件3。那你想想,100个人进行了这个请求,相当于你花在读取这个文件上的时间就是28×100=2800ms了。那么,如果你把文件缓存起来,那只要第一个用户的请求读取了,第二个用户不需要读取了,从内存取是很快速的,可能1ms都不到。
public class MyServlet extends Servlet{
private static Map<String, String> fileName2Data = new HashMap<String, String>();
private void processFile3(String fName){
String data = fileName2Data.get(fName);
if(data==null){
data = readFromFile(fName); //耗时28ms
fileName2Data.put(fName, data);
}
//process with data
}
}
看起来好像还不错,建立一个文件名和文件数据的映射。如果读取一个map中已经存在的数据,那么就不不用读取文件了。
可是问题在于,Servlet是并发,上面会导致一个很严重的问题,死循环。因为,HashMap在并发修改的时候,可能是导致循环链表的构成!!!(具体你可以自行阅读HashMap源码)如果你没接触过多线程,可能到时候发现服务器没请求也巨卡,也不知道什么情况!
好的,那就用ConcurrentHashMap,正如他的名字一样,他是一个线程安全的HashMap,这样能轻松解决问题。
public class MyServlet extends Servlet{
private static ConcurrentHashMap<String, String> fileName2Data = new ConcurrentHashMap<String, String>();
private void processFile3(String fName){
String data = fileName2Data.get(fName);
if(data==null){
data = readFromFile(fName); //耗时28ms
fileName2Data.put(fName, data);
}
//process with data
}
}
这样真的解决问题了吗,这样虽然只要有用户访问过文件a,那另一个用户想访问文件a,也会从fileName2Data中拿数据,然后也不会引起死循环。
可是,如果你觉得这样就已经完了,那你把多线程也想的太简单了,骚年!
你会发现,1000个用户首次访问同一个文件的时候,居然读取了1000次文件(这是最极端的,可能只有几百)。What the fuckin hell!!!
难道代码错了吗,难道我就这样过我的一生!
好好分析下。Servlet是多线程的,那么
public class MyServlet extends Servlet{
private static ConcurrentHashMap<String, String> fileName2Data = new ConcurrentHashMap<String, String>();
private void processFile3(String fName){
String data = fileName2Data.get(fName);
//“偶然”-- 1000个线程同时到这里,同时发现data为null
if(data==null){
data = readFromFile(fName); //耗时28ms
fileName2Data.put(fName, data);
}
//process with data
}
}
上面注释的“偶然”,这是完全有可能的,因此,这样做还是有问题。
因此,可以自己简单的封装一个任务来处理。
public class MyServlet extends Servlet{
private static ConcurrentHashMap<String, FutureTask> fileName2Data = new ConcurrentHashMap<String, FutureTask>();
private static ExecutorService exec = Executors.newCacheThreadPool();
private void processFile3(String fName){
FutureTask data = fileName2Data.get(fName);
//“偶然”-- 1000个线程同时到这里,同时发现data为null
if(data==null){
data = newFutureTask(fName);
FutureTask old = fileName2Data.putIfAbsent(fName, data);
if(old==null){
data = old;
}else{
exec.execute(data);
}
}
String d = data.get();
//process with data
}
private FutureTask newFutureTask(final String file){
return new FutureTask(new Callable<String>(){
public String call(){
return readFromFile(file);
}
private String readFromFile(String file){return "";}
}
}
}