Java多线程通过多核CPU来提升速度--更快的执行

全文翻译自15L大神

 

方案1:单线程

假设有个请求,这个请求服务端的处理需要执行3个很缓慢的IO操作(比如数据库查询或文件查询),那么正常的顺序可能是(括号里面代表执行时间):
a、读取文件1  (10ms)
b、处理1的数据(1ms)
c、读取文件2  (10ms)
d、处理2的数据(1ms)
e、读取文件3  (10ms)
f、处理3的数据(1ms)
g、整合1、2、3的数据结果 (1ms)
单线程总共就需要34ms。

package cn.bellychang.d0209;

public class NoConcurrence {

	/**
	 * @param args
	 * @throws InterruptedException 
	 */
	public static void main(String[] args) throws InterruptedException {
		long start = System.currentTimeMillis();
		int a,b,c;
		//读取文件1
		Thread.sleep(10L);
		//处理1的数据
		Thread.sleep(1L);
		a = 1;
		//读取文件2
		Thread.sleep(10L);
		//处理2的数据
		Thread.sleep(1L);
		b =1;
		//读取文件3
		Thread.sleep(10L);
		//处理3的数据
		Thread.sleep(1L);
		//整合1、2、3的数据结果
		Thread.sleep(1L);
		c = 1;
		int result = a + b + c;
		long end = System.currentTimeMillis();
		System.out.println(end - start);
	}

}

方案2:如果你在这个请求内,把ab、cd、ef分别分给3个线程去做,就只需要12ms了。

package cn.bellychang.d0209;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

class ThreadA implements Callable<Integer> {

	@Override
	public Integer call() throws Exception {
		// 读取文件1
		Thread.sleep(10L);
		// 处理1的数据
		Thread.sleep(1L);
		return 1;
	}

}

class ThreadB implements Callable<Integer> {

	@Override
	public Integer call() throws Exception {
		// 读取文件2
		Thread.sleep(10L);
		// 处理2的数据
		Thread.sleep(1L);
		return 1;
	}

}

class ThreadC implements Callable<Integer> {

	@Override
	public Integer call() throws Exception {
		// 读取文件2
		Thread.sleep(10L);
		// 处理2的数据
		Thread.sleep(1L);
		return 1;
	}

}

public class ConcurenceForMultiCPU {

	/**
	 * @param args
	 * @throws InterruptedException
	 * @throws ExecutionException 
	 */
	public static void main(String[] args) throws InterruptedException, ExecutionException {

		long start = System.currentTimeMillis();
		ExecutorService exec = Executors.newCachedThreadPool();
		Future<Integer> f = exec.submit(new ThreadA());
		Future<Integer> g = exec.submit(new ThreadB());
		Future<Integer> h = exec.submit(new ThreadC());
		
		int result = f.get()+g.get()+h.get();
		
		long end = System.currentTimeMillis();
		System.out.println(end - start);
	}

}


所以多线程不是没怎么用,而是,你平常要善于发现一些可优化的点。然后评估方案是否应该使用。

方案3:

假设还是上面那个相同的问题:但是每个步骤的执行时间不一样了。
a、读取文件1  (1ms)
b、处理1的数据(1ms)
c、读取文件2  (1ms)
d、处理2的数据(1ms)
e、读取文件3  (28ms)
f、处理3的数据(1ms)
g、整合1、2、3的数据结果 (1ms)
单线程总共就需要34ms。

package cn.bellychang.d0209;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;

class ThreadA1 implements Callable<Integer> {

	@Override
	public Integer call() throws Exception {
		// 读取文件1
		Thread.sleep(1L);
		// 处理1的数据
		Thread.sleep(1L);
		return 1;
	}

}

class ThreadB1 implements Callable<Integer> {

	@Override
	public Integer call() throws Exception {
		// 读取文件2
		Thread.sleep(1L);
		// 处理2的数据
		Thread.sleep(1L);
		return 1;
	}

}

class ThreadC1 implements Callable<Integer> {

	@Override
	public Integer call() throws Exception {
		// 读取文件2
		Thread.sleep(28L);
		// 处理2的数据
		Thread.sleep(1L);
		return 1;
	}

}

public class ConcurenceForMultiCPU1 {

	/**
	 * @param args
	 * @throws InterruptedException
	 * @throws ExecutionException 
	 */
	public static void main(String[] args) throws InterruptedException, ExecutionException {

		long start = System.currentTimeMillis();
		ExecutorService exec = Executors.newCachedThreadPool();
		Future<Integer> f = exec.submit(new ThreadA1());
		Future<Integer> g = exec.submit(new ThreadB1());
		Future<Integer> h = exec.submit(new ThreadC1());
		
		int result = f.get()+g.get()+h.get();
		
		long end = System.currentTimeMillis();
		System.out.println(end - start);
	}

}


如果还是按上面的划分方案(上面方案和木桶原理一样,耗时取决于最慢的那个线程的执行速度),在这个例子中是第三个线程,执行29ms。那么最后这个请求耗时是30ms。比起不用单线程,就节省了4ms。但是有可能线程调度切换也要花费个1、2ms。因此,这个方案显得优势就不明显了,还带来程序复杂度提升。不太值得。

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


那么现在优化的点,就不是第一个例子那样的任务分割多线程完成。而是优化文件3的读取速度。
可能是采用缓存和减少一些重复读取。
首先,假设有一种情况,所有用户都请求这个请求,那其实相当于所有用户都需要读取文件3。那你想想,100个人进行了这个请求,相当于你花在读取这个文件上的时间就是28×100=2800ms了。那么,如果你把文件缓存起来,那只要第一个用户的请求读取了,第二个用户不需要读取了,从内存取是很快速的,可能1ms都不到。

public class MyServlet extends Servlet{
    private static Map<String, String> fileName2Data = new HashMap<String, String>();
    private void processFile3(String fName){
        String data = fileName2Data.get(fName);
        if(data==null){
            data = readFromFile(fName);    //耗时28ms
            fileName2Data.put(fName, data);
        }
        //process with data
    }
}


看起来好像还不错,建立一个文件名和文件数据的映射。如果读取一个map中已经存在的数据,那么就不不用读取文件了。
可是问题在于,Servlet是并发,上面会导致一个很严重的问题,死循环。因为,HashMap在并发修改的时候,可能是导致循环链表的构成!!!(具体你可以自行阅读HashMap源码)如果你没接触过多线程,可能到时候发现服务器没请求也巨卡,也不知道什么情况!
好的,那就用ConcurrentHashMap,正如他的名字一样,他是一个线程安全的HashMap,这样能轻松解决问题。

public class MyServlet extends Servlet{
    private static ConcurrentHashMap<String, String> fileName2Data = new ConcurrentHashMap<String, String>();
    private void processFile3(String fName){
        String data = fileName2Data.get(fName);
        if(data==null){
            data = readFromFile(fName);    //耗时28ms
            fileName2Data.put(fName, data);
        }
        //process with data
    }
}


这样真的解决问题了吗,这样虽然只要有用户访问过文件a,那另一个用户想访问文件a,也会从fileName2Data中拿数据,然后也不会引起死循环。

可是,如果你觉得这样就已经完了,那你把多线程也想的太简单了,骚年!
你会发现,1000个用户首次访问同一个文件的时候,居然读取了1000次文件(这是最极端的,可能只有几百)。What the fuckin hell!!!

难道代码错了吗,难道我就这样过我的一生!

好好分析下。Servlet是多线程的,那么

public class MyServlet extends Servlet{
    private static ConcurrentHashMap<String, String> fileName2Data = new ConcurrentHashMap<String, String>();
    private void processFile3(String fName){
        String data = fileName2Data.get(fName);
        //“偶然”-- 1000个线程同时到这里,同时发现data为null
        if(data==null){
            data = readFromFile(fName);    //耗时28ms
            fileName2Data.put(fName, data);
        }
        //process with data
    }
}

上面注释的“偶然”,这是完全有可能的,因此,这样做还是有问题。

因此,可以自己简单的封装一个任务来处理。

public class MyServlet extends Servlet{
    private static ConcurrentHashMap<String, FutureTask> fileName2Data = new ConcurrentHashMap<String, FutureTask>();
    private static ExecutorService exec = Executors.newCacheThreadPool();
    private void processFile3(String fName){
        FutureTask data = fileName2Data.get(fName);
        //“偶然”-- 1000个线程同时到这里,同时发现data为null
        if(data==null){
            data = newFutureTask(fName);
            FutureTask old = fileName2Data.putIfAbsent(fName, data);
            if(old==null){
                data = old;
            }else{
                exec.execute(data);
            }
        }
        String d = data.get();
        //process with data
    }
    
    private FutureTask newFutureTask(final String file){
        return  new FutureTask(new Callable<String>(){
            public String call(){
                return readFromFile(file);
            }

            private String readFromFile(String file){return "";}
        }
    }
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值