朴素贝叶斯原理

朴素贝叶斯是一种基于贝叶斯定理和特征条件独立假设的生成模型。其优点包括分类效率高、适合小规模数据和增量训练,但缺点是对属性独立性假设过于理想化,可能导致分类效果不佳。
摘要由CSDN通过智能技术生成

朴素贝叶斯原理

生成模型和判别模型

20170828150388353437252.png

各自优点

生成模型:可以还原出联合概率分布 P(Y|X) ,学习收敛速度更快。

判别模型:直接面对预测,准确率更高,还可对数据进行抽象,定义特征使用特征,简化学习问题。

贝叶斯公式

2017082815038839663840.jpg

机器学习视角下:

20170828150388418489201.jpg

朴素贝叶斯模型

前提假设条件独立

20170828150388538760381.jpg

我们要解决的问题:

给定 (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值