朴素贝叶斯原理
生成模型和判别模型
各自优点
生成模型:可以还原出联合概率分布 P(Y|X) ,学习收敛速度更快。
判别模型:直接面对预测,准确率更高,还可对数据进行抽象,定义特征使用特征,简化学习问题。
贝叶斯公式
机器学习视角下:
朴素贝叶斯模型
前提假设条件独立
我们要解决的问题:
给定 (
生成模型:可以还原出联合概率分布 P(Y|X) ,学习收敛速度更快。
判别模型:直接面对预测,准确率更高,还可对数据进行抽象,定义特征使用特征,简化学习问题。
前提假设条件独立
我们要解决的问题:
给定 (