朴素贝叶斯原理总结

本文深入探讨朴素贝叶斯算法,解释其背后的贝叶斯原理,介绍朴素贝叶斯分类的工作流程,包括后验概率最大化、条件独立性假设以及如何处理概率为0的问题。同时,讨论了朴素贝叶斯与其他分类器如逻辑回归的差异,并列举了三种常见的朴素贝叶斯模型:多项式、高斯和伯努利分布模型。
摘要由CSDN通过智能技术生成

贝叶斯原理

贝叶斯原理其实是用来求“逆向概率”的。所谓“逆向概率”是相对“正向概率”而言。就是从结果推出条件。贝叶斯原理建立在主观判断的基础上:在我们不了解所有客观事实的情况下,同样可以先估计一个值,然后根据实际结果不断进行修正。

贝叶斯公式

image
实际上,贝叶斯公式就是求阶后验概率的。

朴素贝叶斯

它是一种简单但极为强大的预测建模算法。之所以称为朴素贝叶斯,是因为它假设每个输入变量是独立的。这是一个强硬的假设,实际情况并不一定,但是这项技术对于绝大部分的复杂问题仍然非常有效。

输入变量就是特征,朴素贝叶斯假设这些特征之间是没有关系的,是独立事件。因此算特征概率的时候可以分开算然后相乘。

朴素贝叶斯模型由两种类型的概率组成:
  • 每个类别的概率P(Cj);
  • 每个属性的条件概率P(Ai|Cj)。
类别概率和条件概率的区别:

类别概率是输出变量之间的概率,与特征没有关系。但条件概率是基于特征的变量的概率。

为了训练朴素贝叶斯模型,我们需要先给出训练数据,以及这些数据对应的分类。那么上面这两个概率,也就是类别概率和条件概率。他们都可以从给出的训练数据中计算出来。一旦计算出来,概率模型就可以使用贝叶斯原理对新数据进行预测。

贝叶斯原理、贝叶斯分类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值