贝叶斯原理
贝叶斯原理其实是用来求“逆向概率”的。所谓“逆向概率”是相对“正向概率”而言。就是从结果推出条件。贝叶斯原理建立在主观判断的基础上:在我们不了解所有客观事实的情况下,同样可以先估计一个值,然后根据实际结果不断进行修正。
贝叶斯公式
实际上,贝叶斯公式就是求阶后验概率的。
朴素贝叶斯
它是一种简单但极为强大的预测建模算法。之所以称为朴素贝叶斯,是因为它假设每个输入变量是独立的。这是一个强硬的假设,实际情况并不一定,但是这项技术对于绝大部分的复杂问题仍然非常有效。
输入变量就是特征,朴素贝叶斯假设这些特征之间是没有关系的,是独立事件。因此算特征概率的时候可以分开算然后相乘。
朴素贝叶斯模型由两种类型的概率组成:
- 每个类别的概率P(Cj);
- 每个属性的条件概率P(Ai|Cj)。
类别概率和条件概率的区别:
类别概率是输出变量之间的概率,与特征没有关系。但条件概率是基于特征的变量的概率。
为了训练朴素贝叶斯模型,我们需要先给出训练数据,以及这些数据对应的分类。那么上面这两个概率,也就是类别概率和条件概率。他们都可以从给出的训练数据中计算出来。一旦计算出来,概率模型就可以使用贝叶斯原理对新数据进行预测。