大数据课程K11——Spark的数据挖掘&&机器学习

本文介绍了Spark在数据挖掘和机器学习中的应用,涵盖了数据挖掘的基本概念,机器学习的原理,深度学习的重要性,以及人工智能的定义。文章还探讨了数据挖掘体系,并列举了机器学习在市场分析、风险管理、欺诈检测、文本挖掘、推荐系统和模式识别等多个领域的实际应用案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章作者邮箱:yugongshiye@sina.cn              地址:广东惠州

 ▲ 本章节目的

⚪ 了解Spark的概念——数据挖掘;

⚪ 了解Spark的概念——机器学习;

⚪ 了解Spark的概念——深度学习;

⚪ 了解Spark的概念——人工智能;

⚪ 了解Spark的概念——数据挖掘体系;

⚪ 掌握Spark的机器学习应用领域;

一、各概念阐述

1. 数据挖掘

数据挖掘:也就是data mining,是一个很宽泛的概念,也是一个新兴学科,旨在如何从海量数据中挖掘出有用的信息来

数据挖掘这个工作BI(商业智能)可以做,统计分析可以做,大数据技术可以做,市场运营也可以做,或者用excel分析数据,发现了一些有用的信息,然后这些信息可以指导你的business,这也属于数据挖掘。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值