100天搞定机器学习(100-Days-Of-ML)(一)数据预处理

本文是基于Avik Jain的100-Days-Of-ML-Code项目,总结了数据预处理在机器学习中的重要步骤,包括数据集的导入、处理缺失数据、分类数据转换、数据集划分和特征缩放。这些实践对于提升模型训练效果至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是github一个开源项目,作者是Avik Jain,内容是从机器学习的基础概念起步,逐层递进,很适合初学者。github地址是https://github.com/Avik-Jain/100-Days-Of-ML-Code。截至到现在,已经有近16000多的star。

为了学习ML的实战技巧,跟着这个开源项目学习了一段时间,并贡献了一点issues。现在将自己的学习过程总结起来,仅供以后参考。

该项目前期用的是sklearn来学习各种ML的模型,但是对于时下火热的深度学习并没有多少的代码实战,可以这样说该项目是Avik Jain学习机器学习方面的步骤,很多知识点都是一句话带过(比如,今天深入学习了SVM,Day9 Got an intution on what SVM is and how it is used to solve Classification problem.)。

总结了一下,该项目中有关ML模型只有很少的一部分有代码实例:

  • 有监督学习:1.数据预处理 2.简单线性回归 3.多元线性回归 4.逻辑回归 5.KNN 6.SVM支持向量机 7.决策树 8.随机森林
  • 无监督学习:1.K-Means 2.层次聚类

将这些简单的机器学习实战总结,并给出sklearn中这些模型的相关解释。另外所有数据集可以从Avik Jain的github上下载。


第一天:数据预处理

数据预处理是机器学习的基础,完美的数据预处理会对模型的训练有着很大的帮助。实际场景下的数据集大多是比较复杂的,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值