由于只有三行,所以两列的话有三种情况,好,我们把两列看成一个组合。
那么当n为偶数时,f[n]至少等于3*f[n-2];并且等于它的前提是f[n-2]是刚好组合好的,没有多出来一部分,也没有少一部分。
另一种情况就是,n-2的时候不是刚好组和好,那么f[n]就需要加上2*f[n-4],(同样,它的前提是n-4刚好组和好),如果n-4没有组合好,
f[n]就需要加上2*f[n-6].......
以此类推:我得出递推公式f(n)=3f(n-2)+2f(n-4)+2f(n-6)+....+f(0);
再有f(n-2)=3*f(n-4)+2f(n-6)+...+f(0)两式相减可得:
f(n)=4f(n-2)-f(n-4)
注意,f[0]=1;不要问为什么,我也不知道。
#include<iostream>
#include<cstdlib>
#include<stdio.h>
#define ll long long
using namespace std;
ll f[31];
int main()
{
ll n;
f[0]=1;f[2]=3;
for(int i=4;i<=30;i+=2)
f[i]=4*f[i-2]-f[i-4];
while(scanf("%lld",&n))
{
if(n==-1) break;
printf("%lld\n",f[n]);
}
}