树的节点权值修改,边的分割,边的链接,某两点之间路径上的最大节点权值。
典型的LCT模板题!
我的代码比较冗长,是用以前做别的题的模板修改得来的,所以有些函数没有用到,不过也很有参考价值(遇到别的类似的题,可以直接修改就ok了~),是个很好的模板!
代码如下:
/*
一颗树,有很多操作:
(1)加上边a-b;
(2)将树以a为根,然后删除b和它的父节点的边;
(3)a->b的路径上的所有点权加上d(包含a,b);
(4)查询a->b的路径上最大的点权;
不合法的操作输出-1.
*/
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 300110;
struct Node *null;
struct Node{
Node *fa,*ch[2];
int val,size; //val是该点的权重,size是以它为根的子树的大小。
int same,add;
int rev;
int mm,mmc;
int sm,smc;
inline void clear(int _val){ //初始化该点的点权。
fa = ch[0] = ch[1] = null;
val = _val; size = 1;
same = -INF;
add = 0;
mm = _val; mmc = 1;
sm = -INF; smc = 0;
}
inline void add_val(int _val,int num){ //权值为val,出现的次数为num
if(_val == -INF)return;
if(_val < sm)return;
if(_val == sm)smc += num;
else if(_val < mm){
sm = _val; smc = num;
}
else if(_val == mm){
mmc += num;
}
else{
sm = mm; smc = mmc;
mm = _val; mmc = num;
}
}
inline void push_up(){
size = 1 + ch[0]->size + ch[1]->size;
mm = sm = -INF;
mmc = smc = 0;
add_val(val,1);
add_val(ch[0]->mm,ch[0]->mmc);
add_val(ch[0]->sm,ch[0]->smc);
add_val(ch[1]->mm,ch[1]->mmc);
add_val(ch[1]->sm,ch[1]->smc);
}
inline void setc(Node *p,int d){
ch[d] = p;
p->fa = this;
}
inline bool d(){
return fa->ch[1] == this;
}
inline bool isroot(){
return fa == null || fa->ch[0] != this && fa->ch[1] != this;
}
inline void flip(){
if(this == null)return;
swap(ch[0],ch[1]);
rev ^= 1;
}
inline void update_add(int w){
if(this == null)return;
if(mm != -INF)mm += w;
if(sm != -INF)sm += w;
val += w;
add += w;
}
inline void update_same(int w){
if(this == null)return;
mm = w; mmc = size;
sm = -INF; smc = 0;
same = w;
val = w;
add = 0;
}
inline void push_down(){
if(same != -INF){
ch[0]->update_same(same);
ch[1]->update_same(same);
same = -INF;
}
if(add){
ch[0]->update_add(add);
ch[1]->update_add(add);
add = 0;
}
if(rev){
ch[0]->flip();
ch[1]->flip();
rev = 0;
}
}
inline void go(){
if(!isroot())fa->go();
push_down();
}
inline void rot(){
Node *f = fa, *ff = fa->fa;
int c = d(), cc = fa->d();
f->setc(ch[!c],c);
this->setc(f,!c);
if(ff->ch[cc] == f)ff->setc(this,cc);
else this->fa = ff;
f->push_up();
}
inline Node* splay(){
go();
while(!isroot()){
if(!fa->isroot())
d()==fa->d() ? fa->rot() : rot();
rot();
}
push_up();
return this;
}
inline Node* access(){
for(Node *p = this,*q = null; p != null; q = p, p = p->fa){
p->splay()->setc(q,1);
p->push_up();
}
return splay();
}
inline Node* find_root(){
Node *x;
for(x = access(); x->push_down(), x->ch[0] != null; x = x->ch[0]);
return x;
}
void make_root(){
access()->flip();
}
void cut(){
access();
ch[0]->fa = null;
ch[0] = null;
push_up();
}
void cut(Node *x){ //删除该节点和x之间的边。
if(this == x || find_root() != x->find_root()) {printf("-1\n");return;}
else{
x->make_root();
cut();
}
}
void link(Node *x){ //该节点链接x节点。(即该节点和x节点之间加一条边)
if(find_root() == x->find_root()) {printf("-1\n");return;}
else {
make_root(); fa = x;
}
}
};
void SAME(Node *x,Node *y,int w){ //(2)a->b的路径上的所有点权改为x(包含a,b);
x->access();
for(x = null; y != null; x = y, y = y->fa){
y->splay();
if(y->fa == null){
y->ch[1]->update_same(w);
x->update_same(w);
y->val = w;
y->push_up();
return;
}
y->setc(x,1);
y->push_up();
}
}
void ADD(Node *x,Node *y,int w){ //(3)a->b的路径上的所有点权加上d(包含a,b);
x->access();
for(x = null; y != null; x = y, y = y->fa){
y->splay();
if(y->fa == null){
y->ch[1]->update_add(w);
x->update_add(w);
y->val += w;
y->push_up();
return;
}
y->setc(x,1);
y->push_up();
}
}
int MM,MMC; //最大值,最大值出现的次数
int SM,SMC; //第二大值,及出现的次数
void ADD_VAL(int val,int num){ //权值为val,出现的次数是num
if(val == -INF)return;
if(val < SM)return;
if(val == SM)SMC += num;
else if(val < MM){
SM = val;
SMC = num;
}
else if(val == MM){
MMC += num;
}
else {
SM = MM; SMC = MMC;
MM = val; MMC = num;
}
}
void ask(Node *x,Node *y){ //查询a->b的路径上严格第二大的值,以及它出现的次数;
x->access();
for(x=null; y != null; x = y, y = y->fa){
y->splay();
if(y->fa == null){
MM = SM = -INF;
MMC = SMC = 0;
ADD_VAL(y->val,1);
ADD_VAL(y->ch[1]->mm,y->ch[1]->mmc);
ADD_VAL(y->ch[1]->sm,y->ch[1]->smc);
ADD_VAL(x->sm,x->smc);
ADD_VAL(x->mm,x->mmc);
return;
}
y->setc(x,1);
y->push_up();
}
}
Node pool[MAXN],*tail;
Node *node[MAXN];
//用来加快建树,防止题目卡时间。
struct Edge{
int to,next;
}edge[MAXN*2];
int head[MAXN],tot;
void init(){
tot = 0;
memset(head,-1,sizeof(head));
}
inline void addedge(int u,int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
int g[MAXN];
int fa[MAXN];
void bfs(int s){ //用来建树
int l,r;
g[l=r=1] = s;
fa[s] = s;
while(l <= r){
int u = g[l++];
for(int i = head[u];i != -1;i = edge[i].next){
int v = edge[i].to;
if(v == fa[u])continue;
fa[v] = u;
node[v]->fa = node[u];
g[++r] = v;
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,m;
//scanf("%d",&T);
while(scanf("%d",&n)!=EOF){
tail = pool;
null = tail++;
null->fa = null->ch[0] = null->ch[1] = null;
null->size = null->rev = 0;
null->same = -INF; null->add = 0;
null->mm = null->sm = -INF;
null->mmc = null->smc = 0;
init();
int u,v;
for(int i = 1;i < n;i++){
scanf("%d%d",&u,&v);
addedge(u,v); //这里本来可以直接用node[u]->link(node[v]);来直接建边的,但是会慢一点。
addedge(v,u);
}
for(int i = 1;i <= n;i++){
int v ;
scanf("%d",&v); //初始化点权
node[i] = tail++;
node[i]->clear(v);
}
bfs(1); //一定要先初始化点权以后再建树!
scanf("%d",&m);
int op;
int x,y,a,b;
while(m--){
scanf("%d",&op);
if(op == 1){
scanf("%d%d",&a,&b);
node[a]->link(node[b]); //a-b建边
}
else if(op == 2){
scanf("%d%d",&a,&b);
if(a==b||node[a]->find_root()!=node[b]->find_root())
{
printf("-1\n");
}
else {
node[a]->make_root(); //变为以a为根
node[b]->cut(node[b]->fa); //删掉b和它的父节点的边
}
}
else if(op == 3){
scanf("%d%d%d",&x,&a,&b);
if(node[a]->find_root()!=node[b]->find_root())
{
printf("-1\n");
}
else
{
ADD(node[a],node[b],x);//(2)a->b的路径上的所有点权加上x(包含a,b);
}
}
else{
scanf("%d%d",&a,&b);
if(node[a]->find_root()!=node[b]->find_root())
{
printf("-1\n");
}
else
{
ask(node[a],node[b]);
printf("%d\n",MM);
}
}
}
printf("\n");
}
return 0;
}