Unique Paths

Unique Paths

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

解题技巧:

从(1,1)到(m, n)需要向下走m步,向右走n步,共有(m+n)! / (m! * n!)种方法,但是m, n<100,故在求阶乘时,存在数据过大问题。本题采用的

解法是动态规划,状态转移方程为A[i][j] = A[i-1][j] + A[i][j-1]

代码:

int uniquePaths(int m, int n)
{
     int A[m][n];

     for(int i = 0; i < m; i ++)
     {
         for(int j = 0; j < n; j ++)
         {
             if(i == 0 || j == 0) A[i][j] = 1;
             else A[i][j] = A[i-1][j] + A[i][j-1];
         }
     }
     return A[m-1][n-1];
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值