Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
解题技巧:
从(1,1)到(m, n)需要向下走m步,向右走n步,共有(m+n)! / (m! * n!)种方法,但是m, n<100,故在求阶乘时,存在数据过大问题。本题采用的
解法是动态规划,状态转移方程为A[i][j] = A[i-1][j] + A[i][j-1]
代码:
int uniquePaths(int m, int n)
{
int A[m][n];
for(int i = 0; i < m; i ++)
{
for(int j = 0; j < n; j ++)
{
if(i == 0 || j == 0) A[i][j] = 1;
else A[i][j] = A[i-1][j] + A[i][j-1];
}
}
return A[m-1][n-1];
}