Sqrt(x)Implement int sqrt(int x)
.
Compute and return the square root of x.
解题技巧:
方法1:采用二分搜索法
方法2:牛顿切线法
计算x2 = n的解,令f(x)=x2-n,也就是求f(x)=0的解
首先取x0,如果x0不是解,做经过点(x0,f(x0))的切线,与x轴的交点为x1;
同样地,如果x1不是解,做经过点(x1,f(x1))的切线,与x轴的交点为x2;
以此类推,以这样的方式得到的xi会无限趋近于f(x)=0的解。
判断xi是否是f(x)=0的解有两种方法:1. 直接计算f(xi)的值判断是否为0;2. 判断前后两个解xi和xi-1是否无限接近
经过点(xi,f(xi))的切线方程为f(x) = f(xi) + f'(xi)(x - xi),其中f'(x)为f(x)的导数,本题中为2x。令切线方程等于0,可得xi+1=xi - f(xi) / f'(xi)。
简化:xi+1=xi - (xi2 - n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2。
最后得到迭代公式:xi+1= (xi + n/xi) / 2
代码:
int mySqrt(int x)
{
unsigned long long bg = 0, ed = x/2 + 1, mid, tmp;
while(bg <= ed)
{
mid = (bg + ed) / 2;
tmp = mid * mid;
if(tmp == x) return mid;
else if(tmp < x) bg = mid+1;
else ed = mid-1;
}
return ed;
}
int mySqrt(int x)
{
if (x ==0) return 0;
double pre;
double cur = 1;
do
{
pre = cur;
cur = x / (2.0 * pre) + pre / 2.0;
} while (abs(cur - pre) > 0.00001);
return int(cur);
}