Sqrt(x)

Sqrt(x)

Implement int sqrt(int x).

Compute and return the square root of x.

解题技巧:

方法1:采用二分搜索法

方法2:牛顿切线法

计算x2 = n的解,令f(x)=x2-n,也就是求f(x)=0的解

首先取x0,如果x0不是解,做经过点(x0,f(x0))的切线,与x轴的交点为x1

同样地,如果x1不是解,做经过点(x1,f(x1))的切线,与x轴的交点为x2

以此类推,以这样的方式得到的xi会无限趋近于f(x)=0的解。

判断xi是否是f(x)=0的解有两种方法:1. 直接计算f(xi)的值判断是否为0;2. 判断前后两个解xi和xi-1是否无限接近

经过点(xi,f(xi))的切线方程为f(x) = f(xi) + f'(xi)(x - xi),其中f'(x)为f(x)的导数,本题中为2x。令切线方程等于0,可得xi+1=xi - f(xi) / f'(xi)。

简化:xi+1=xi - (xi- n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2。

最后得到迭代公式:xi+1= (xi + n/xi) / 2

代码:

int mySqrt(int x)
{
    unsigned long long bg = 0, ed = x/2 + 1, mid, tmp;
    while(bg <= ed)
    {
        mid = (bg + ed) / 2;
        tmp = mid * mid;
        if(tmp == x) return mid;
        else if(tmp < x) bg = mid+1;
        else ed = mid-1;
    }
    return ed;
}
int mySqrt(int x)
{
    if (x ==0)  return 0;
    double pre;
    double cur = 1;
    do
    {
        pre = cur;
        cur = x / (2.0 * pre) + pre / 2.0;
    } while (abs(cur - pre) > 0.00001);
    return int(cur);
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值