深度学习中激活函数

激活函数在神经网络中提供非线性建模能力,避免线性映射限制。sigmoid函数存在饱和性和非0均值问题,导致梯度消失;tanh与sigmoid相似但梯度消失较轻;ReLU缓解梯度消失但有神经元死亡问题;Leaky ReLU和PReLU是ReLU的改进版;ELU和Maxout进一步优化,提高鲁棒性和收敛速度。推荐使用ReLU及其变种,谨慎调整学习率。
摘要由CSDN通过智能技术生成

本文主要参考博文:

1. http://blog.csdn.net/u014595019/article/details/52562159

2. https://zhuanlan.zhihu.com/p/22142013


激活函数的作用

       神经网络中激活函数的主要作用是提供网络的非线性建模能力。假设一个神经网络中仅包含线性卷积和全连接运算,那么该网络仅能够表达线性映射,即便增加网络的深度也依旧还是线性映射,难以有效建模实际环境中非线性分布的数据。加入(非线性)激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。因此,激活函是深度神经网络中不可或缺的部分。


激活函数的性质

可微性: 当优化方法是基于梯度的时候,这个性质是必须的。

单调性: 当激活函数是单调的时候,单层网络能够保证是凸函数。

输出值的范围: 当激活函数的输出是有限的时候,基于梯度的优化方法会更加稳定,因为特征的表示受有限权值的影响更显著;

                         当激活函数的输出是无限的时候,模型的训练会更加高效,不过在这种情况下,一般需要更小的learning rate


sigmod函数

f(x)=11+ex

这里写图片描述

        sigmoid 是使用范围最广的一类激活函数,具有指数函数形状,它在物理意义上最接近生物神经元。但是,从上图可以看出,

函数有两方面的缺陷:饱和性、非0均值。

        饱和性可以分为软饱和、硬饱和。其中,软饱和是指函数的导数趋近于0,硬饱和是指函数的导数等于0,软饱和的公式如1所

示,饱和的公式如2所示。

                              (1)

  (2)

       sigmoid 的软饱和性,使得深度神经网络在二三十年里一直难以有效的训练,是阻碍神经网络发展的重要原因。具体来说,由

于在反向传递中,sigmoid函数向下传递的梯度包含了一个f'(x)因子(sigmoid关于输入的导数),因此一旦输入落入饱和区,f'(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值