蓝桥杯 幂一矩阵 2014年JavaB组决赛第5题

本文探讨了蓝桥杯2014年JavaB组决赛中的幂一矩阵问题,强调掌握矩阵运算规律的重要性。作者指出,解决此类问题并不需要复杂算法,而是通过减少运算量来优化。文章提醒避免使用不必要的复杂方法,如AUP或特征方程,而是关注矩阵n次幂的简单规则。同时,分享了如何利用行和列的1位置简化计算,并提出计算每一行达到其行数所需次数的最小公倍数作为解决方案。
摘要由CSDN通过智能技术生成

标题:幂一矩阵

    天才少年的邻居 atm 最近学习了线性代数相关的理论,他对“矩阵”这个概念特别感兴趣。矩阵中有个概念叫做幂零矩阵。对于一个方阵 M ,如果存在一个正整数 k 满足 M^k = 0 ,那么 M 就是一个幂零矩阵。(^ 表示乘方)

    atm 不满足幂零矩阵,他自己设想了一个幂一矩阵:对于一个方阵 M ,如果存在一个正整数 k 满足 M^k = I ,其中 I 是单位矩阵,那么 M 就是一个幂一矩阵。

    atm 特别钟情于这样一种方阵:每行每列有且仅有一个 1 。经过 atm 不断实验,他发现这种矩阵都是幂一矩阵。

    现在,他的问题是,给定一个满足以上条件的方阵,他想求最小的 k 是多少。

【输入格式】
第一行一个正整数 n ,表示矩阵大小是 n * n 。
接下来 n 行,每行两个正整数 i j 表示方阵的第 i 行第 j 列为 1。
1 <= i, j <= n 。
行号,列号都从1开始。

【输出格式】
一行。一个正整数,即题目中所说最小的 k 。

【样例输入】
5
3 1
1 2
4 4
2 3
5 5

【样例输出】
3

【数据范围】
对于 30% 的数据满足 n <= 10
对于 60% 的数据答案不超过 10^18
对于 100% 的数据满足 n <&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值