Learning Statistics on Youtube

29 篇文章 7 订阅

Youtube.com is the second most accessed website in the world (surpassed only by its parent, google.com). It has a whopping 1 billion unique views a month. [12] It is a force to be reckoned with. In the video sharing platform, there are many brilliant and hard-working content creators producing high-quality and free educational videos that students and academics alike can enjoy. I made a survey on Youtube content that could be useful for those interested in learning Statistics, and I listed and categorized them below.

Truth be told, this post is a glorified Google search in many respects. In any case, I had intended for a long time to gather this information as to facilitate the often laborious task of finding pertinent resources for learning statistical science in a non-static format (i.e., videos) that is easily accessible, high-quality, instructive and free.

Another motivation had to do with my teaching obligations. In this fall, I will teach a graduate course in Stats with R. To this end, I considered becoming a content creator myself, as to allow students to access the course’s content from the convenience of their homes. In this process, I found some excellent statistical courses on Youtube. Some were really useful in terms of their organization, others in terms of content, interesting explanations, pedagogical skills, availability of materials, etc. Altogether, searching for resources was a very instructive experience, whose fruits should be shared.

Importantly, in this process, I learned that youtube is not short of ‘introductory course on ___.’ Not of Statistics, Probability or R, anyways. Which is a good thing. And often, you even see these three together. Also in abundance, are courses on the ABC’s of probability theory, classical statistics (i.e., up to ANOVA, ANCOVA), and on basics of applied statistics (e.g., Econometrics, Biostatistics, and Machine Learning). Indeed, Machine Learning (mostly through Data Science) is really well represented on Youtube.

Due to the sheer amount of channels, I organized them into three broad categories: use of R as statistical software, use of other statistical software, and lecture format only. I also listed each channel’s content/topic, whether authors provided slides, code, additional materials online (with links), and relevant remarks.

1. LEARNING STATISTICS WITH R

YOUTUBE CHANNEL CONTENT SOFTWARE ONLINE MATERIALS? REMARKS
Mike Marin[Intro] Basic Stats in RRYes, good materialsUniversity British Columbia
Michael Butler[Intro] to R and Stats, ModernRYesGood intro to R + Exercises
EZLearn[Intro] Basic Stats in RRExercises w/ solutions
Renegade Thinking: Courtney Brown[Intro] Undergraduate StatsRYesGood Lectures
Barton Poulson[Intro] Classical Stats, Programming & Solved ExercisesR, Python, SPSSYesGives intro to Python, R, SPSS andlaunching an OLP
Ed Boone[Intro] Basic R and SASR & SASYes
Lynda.com[Intro] Basics of R and DescriptivesRYesOLP
Bryan Craven[Intro] Basic Stats in RRNo
Laura Suttle (Revolution)[Intro] R tour for BeginnersRNo
Phil Chan[Intro] Classical and Bio-statsR, SPSS, EviewsNo
Gordon Anthony Davis[Intro] R Programming TutorialRNoThorough intro for beginners
David Langer[Intro] Basics of RRNoExcellent pedagogical Skills
MrClean1796[Intro] Math, Physics and Statistics, lecture & RRNo
Brian CaffoAdvanced & Bio-Stats, Reproducible ResearchRYes, CourseraandGitHubProfessor of Bio-statistics, Johns Hopkins Univ.
Abbass Al SharifIn-depth Machine LearningRYesExcellent lectures and resources
James ScottAdvanced StatsRYes, and GitHubSeveral Course Materials on GitHub
Derek KaneMachine LearningRYesExcellent Videos, Fourier Analysis, Time series Forecasting
DataCampProgramming, DataViz, R Markdown [free]RYes, paid. 9$ for students
Maria NattestadDataVizRPersonal WebsitePlotting in R for Biologists
Christoph ScherberMixed, GLM, GLS, ContrastsRYes
Librarian WomackTime Series, DataViz, BigDataRYes, Course and .RMaterials online
Jarad NiemiR Workflow, Bayesian, Statistical InferenceRYes
Justin EsareyBayesian, Categorical and Longitudinal Data, Machine LearningRYes, lots and lotsPolitical Scientist
Jeromy AnglimResearch MethodsRBlog:Psych & StatsGitHub+ Rmeetups and Notes onGelman, Carlin, Stern, and Rubin
Erin BuchananUnder- & post-graduate Stats, SEMR, G*Power, ExcelYesExcellent pedagogical strategies
Richard McElreathFrom Basic to Advanced Bayesian StatsR and StanYes, lotsBook lectures
edurekaData ScienceR, Hadoop, PythonYes, online learning plattaformR Intro w/ Hadoop [free]
Learn RR programming, stats on webisteR, PythonYes, andOne R Tip A DayOn website, lots of starter’s code
Data SchoolMachine Learning, Data Manipulation (dplyr)Python, RYesdplyrMachine Learning with Hastie & Tibshirani
Econometrics AcademyStatistics (via Econometrics)R, STATA, SPSSYesOLP, Excellent Materials and Resources
Jalayer AcademyBasic Stats + Machine LearningR, ExcelNoAlso Lectures
Michael LevyAuthoring from R, Markdown, ShinyRNo
Melvin L.Machine Learning, R Programming, PCA, DataVizR, Python, GephiNoInteresting Intro for Spark
OpenIntroOrgIntro to Stats/R plus Inference, Linear Models, BayesianRYes,CourseraandOpenIntroCoursera Courses, Resources in SAS

2. LEARNING STATISTICS WITH OTHER SOFTWARE

YOUTUBE CHANNEL CONTENT SOFTWARE ONLINE MATERIALS? REMARKS
Jonathan TukeBasic StatsMatlabNo
Saiful YusoffPLS, Intro to MaxQDASmartPLS, MaxQDAYesBYU
James GaskinSEM, PLS, ClusterSPSS, AMOS, SmartPLSYesBYU
Quantitative SpecialistsBasic StatsSPSSNoUpbeat videos
RStatsInstituteBasic StatsSPSSNoInstructor at Udemy
how2statsBasic Stats, lecture and software demonstrationsSPSSYesComplete Classical Stats
BrunelASKBasic StatsSPSS 
The Doctoral JourneyBasic StatsSPSSYes
StatisticsLecturesBasic Stats, lecture formatSPSSYesdiscontinued, but thorough basic stats
Andy FieldClassical Stats, lecture and software demonstrationsSPSSYes, registration neededUsed heavely in Social Sciences
Quinnipiac University:BiostatisticsClassical StatsSPSSNo
The RMUoHP BiostatisticsBasic and Bio-StatsSPSS, ExcelNo
PUB708 TeamClassical StatisticsSPSS, MiniTabNo
Professor Ami GatesClassical StatsSPSS, Excel, StatCrunchYes
H. Michael CrowsonIntro and Basic Stats in several SoftareSPSS, STATA, AMOS, LISREALYes?
Math Guy ZeroClassical Stats + SEMSPSS, Excel, PLSNoLots of materials
BayesianNetworksBayesian Statistics, SEM, CausalityBayesianLabYes
Khan AcademyProgramming 101PythonYes
Mike’s SASShort intro to SAS, SPSSSAS, SPSSNo
Christian A. WandelerBasic StatsPSPPNo

3. LECTURES ON STATISTICS

YOUTUBE CHANNEL CONTENT SOFTWARE ONLINE MATERIALS? REMARKS
Stomp On Step 1[Intro] Bio-Stats, BasicLecturesYesUSMLE
Khan Academy[Intro] Basic Stats, lecture formatLecturesYes
Joseph Nystrom[Intro] Basic StatsLecturesYesActive & unorthodox teaching
Statistics Learning Centre[Intro] Basic StatsLecturesYesRegister to access materials
Brandon Foltz[Intro] Basic StatsLecturessoonExcellent visuals
David Waldo[Intro] Probability TheoryLecturesNo
Andrew Jahn[Intro] Basic StatsLecturesNoFSL, AFNI and SPM [Neuro-immaging]
Professor Leonard[Intro] Stats and MathsLecturesNoExcellent pedagogical skills
ProfessorSerna[Intro] Basic StatsLecturesNo
Harvard University[Intro] Thorough Introduction to Probability Theory and StatisticsLecturesNoIn-depth
Victor LavrenkoMachine Learning, Probabilistic, Cluster, PCA, Mixture ModelsLecturesYes, very completeExcellent Content, and lots of it
Jeremy Balka’s StatisticsGraduate-level Classical Stats, LectureLecturesYes, very thoroughExcellent altogether,p-value vid great!
Methods Manchester UniDiscussion on a wide variety of methods, SEMLecturesYesMethods Fair
Steve GrambowSeries on InferenceLecturesYesGreat Lectures on Inference [DUKE]
Statistics Corner: Terry ShaneyfeltStatistical InferenceLecturesYesfrom a clinical perspective
Michel van BiezenComplete Course of StatsLecturesYes, 1, 2, 3Thorough and complete, plus Physics and Maths
Oxford EducationBayesian statistics: a comprehensive courseLecturesYes
Nando de FreitasMachine LearningLecturesYes, alsohere and here
Alex SmolaMachine LearningLecturesYes, slides and code
Abu (Abulhair) SaparovMachine LearningLecturesYesTaught by Tom Mitchell and Maria-Florina Balcan
Geoff GordonMachine Learning, OptimizationLecturesYes
MIT OpenCourseWareProbability Theory,Stochastic ProcessesLecturesYes, here,and here
Alexander IhlerMachine LearningLecturesYes, along w/ many others classes
Royal Statistical SocietyImportant Statistical issuesLecturesYesInteresting topics
Ben LambertGraduate and Advanced StatsLecturesNoAsymptotic Behaviour of Estimators, SEM, EFA
DeepLearning TVMachine (and Deep) LearningLecturesNoExcellent pedagogical skills
Mathematical MonkMachine Learning, and Probability TheoryLecturesNo

FINAL REMARKS

These collection of channels listed here are not supposed to be exhaustive. If I have neglected a youtube channel that you think should figure in this list, please let me know via the contact form atthe bottom of this link. Thank you very much!

Statistics and Machine Learning Toolbox是MATLAB中的一个工具箱,它包含了一系列的统计和机器学习功能模块。其中包括探索性数据分析、数据降维、机器学习、回归和方差分析、概率分布拟合及假设检验等功能模块。\[1\]这个工具箱提供了各种机器学习算法,可以用于解决分类、回归、聚类和强化学习等问题。例如,分类算法可以将一个分类应变量建模为一个或多个预测元的函数,Statistics and Machine Learning Toolbox提供了多种参数化和非参数化分类算法的应用程序和函数,如logistic回归、朴素贝叶斯、k近邻、SVM等。\[2\]此外,该工具箱还实现了多种聚类算法,通过根据相似度测量对数据进行分组来发现数据集中的规律。可用的聚类算法包括k-均值、k-中心点、分层聚类、高斯混合模型和隐马尔可夫模型。当不知道聚类的数量时,可以使用聚类评估技术根据特定指标确定数据中存在的聚类数量。\[3\]因此,Statistics and Machine Learning Toolbox提供了丰富的功能和算法,可以帮助用户进行统计分析和机器学习任务。 #### 引用[.reference_title] - *1* *2* *3* [基于Matlab进行机器学习](https://blog.csdn.net/zhujixiang12/article/details/128771127)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值