Non-Sampling Learning for Personalized Recommendation——笔记

本文探讨了非采样学习在个性化推荐系统中的应用,指出负采样策略可能忽略重要训练样本,而非采样学习能更有效地利用整体数据。清华大学信息检索课题组提出了非采样学习算法,通过数学推理降低了时间复杂度,实现了在不同推荐场景下模型训练时间和性能的提升。实验结果显示,非采样学习方法在推荐效果和效率上显著优于现有方法。
摘要由CSDN通过智能技术生成

Non-Sampling Learning for Personalized Recommendation

[参考]

  • 个性化推荐系统中的非采样学习-陈冲
  • B站视频 https://www.bilibili.com/video/BV1Z64y1u7GK
  • 现有的将深度学习应用大推荐系统任务的工作主要集中在探索和引入不同的神经网络架构,在模型学习算法方面的研究相对较少。
  • 为了优化模型,现有的工作往往使用负采样策略(Negative Sampling)进行训练。虽然负采样方便并且易于实现,但是许多最近的研究表明负采样策略的鲁棒性较差可能会忽略掉重要的训练样例从而导致模型无法收敛到最优的状态。
  • 清华大学信息检索课题组(THUIR)首次探索了将**非采样策略(Non-Sampling, Whole-data based Learning)**应用到基于神经网络的推荐系统中。
  • 通过严格的数学推理,设计了一系列高效的非采样学习算法,将从整体数据中学习的时间复杂度从理论上降低了数十倍。
  • 基于所设计的高效非采样算法框架,分别设计了不同应用场景下的神经网络推荐模型,并在多个现实数据集上相比于已有state-of-the-art方法在训练时间和模型表现上均取得了非常显著的效果。

填补了非采样神经网络推荐模型研究的空白

Outline

    1. background
    1. Negative-Sampling VS Non-Sampling Learning
    1. Efficient Non-Sampling Learning Method
    1. Recommendation Models with Efficient Non-Sampling Learning
    1. Discussion

1 Background

Value of Recommender System (RecSys)

  • RecSys has become a major monetization tool for customer-oriented online services–RecSys已成为面向客户的在线服务的主要获利工具
    • E.g., E-commerce, New Portal, Social Networks, etc.
  • Some statistics:
    • YouTube homepage: 60%+ clicks [Davidson et al. 2010]
    • Netflix: 80%+ movie watches, 1billion+ value/year [Gomze-Uribe et al 2016]
    • Amazon: 30%+ page views [Smith and Linden, 2017]

推荐系统是当前解决信息过载,最有效的方法之一。

Users’ Sparse Feedback Information-用户的稀疏反馈信息

  • More commonly, users interact with items through implicit feedback(通常是隐式反馈)
    • E.g., users’ viewing records and purchase history, etc.(如浏览历史、点击数据)
  • It is difficult to utilize implicit feedback data as it is binary and only has positive examples
    • “Negative Information” in implicit feedback
    • 比如:用户点击了某个东西,可能是用户喜欢这个东西
      • 但是用户没有点击,则反映出来的信息是不全面的
      • 即,用户可能不喜欢某个商品,故不去点击;也可能是用户没有看过它,所以不去点击
      • 所以这些商品不能笼统的被称为负样例
      • 这些没有点击没有购买过的商品占比很多,相比点击的商品 =>> 所以该数据是很稀疏的
  • Users usually rate or click a small set of items compared to hundreds of millions of items in the system

2 Negative-Sampling VS Non-Sampling Learning

Utilizing Implicit Feedback Data - Negative-Sampling VS Non-Sampling Learning

Two strategies have been widely used in previous studies:

  • Negative sampling strategy that samples negative instances from unlabeled data

  • Non-Sampling (whole-data based) strategy that sees all the unlabeled data as negative

  • 故在推荐系统使用隐式反馈数据时,有两种常见的学习方法来处理这两种负样例

    1. 负采样策略

      是从所有用户中没有标记过的样例中抽取一部分作为负例:

      • 如,我们认为用户所有没有购买的商品中肯定有一部分是用户不喜欢,用户对它们的偏好肯定没有买过的商品多,所以我们从里面抽取一部分
      • 因为是抽取一部分,所以整体训练的sample(训练集)会比较少,因此它的训练速度会快一些
      • 但是它的缺点:因为采样的随机性比较大,可能会忽略掉很多其实真正是负样例的样例
      • 所以它的效果往往不是很稳定、在现实生活中往往不能达到一个最优的效果
    2. 非采样策略

      • 就是认为用户所有没有买过的商品都有一定的负样性,都把它当作negative,会有权重
      • 非采样把所有的数据都用上了,那么它可能就会有很好的coverage,
      • 但是因为用了所有的数据,它的复杂度往往比较高

在这里插入图片描述

在传统的推荐方法中,如BPR(会采用一个负采样策略)、矩阵分解、WMF(加权矩阵分解,会采用非采样的策略),

  • 在传统的方法中,它的复杂度往往没有非常高,所以这两种方法都可以用,
  • 但是因为现在基于深度学习的方法多,但基于深度学习的方法,大家关注的点往往是模型的结构,为了比较方便的学习,大家往往采用负样例抽样的方法,
  • 但是我们会觉得这样会降低模型的表现效果

Progresses and limitations in Neural RecSys Models - 神经RecSys模型的进展和局限性

但是现在将深度学习用到推荐系统任务上的工作主要集中在探索和引入不同的神经网络框架

  • 为了优化模型,这些工作往往就采用负样例抽样的方法
  • 负样例虽然方便易于实现,但是最近也有研究表明负样例的鲁棒性比较差
Complex Neural Network
  • Exploring new deep learning architectures for Rec. Sys.
    • Attention, MLP, CNN, etc
    • Superior ability to c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值