-
4 5 2 4 1 3 3 3 2 3 1 3 2 3 3 2 1 1 2 2 4
样例输出
-
24
描述
提示:本题与“积水的城市”相比,数据范围扩大了。
如下图所示,某市市区由M条南北向的大街和N条东西向的道路组成。其中由北向南第i条路和第i+1条路之间的距离是Bi (1 <= i < N),由西向东第i条街和第i+1条街之间的距离是Ai (1 <= i < M)。
小Ho现在位于第x条路和第y条街的交叉口,他的目的地是第p条路和第q条街的交叉口。由于连日降雨,城市中有K个交叉口积水太深不能通行。小Ho想知道到达目的地的最短路径的长度是多少。
输入
第一行包含两个整数N和M。(1 <= N, M <= 1000)
第二行包含N-1个整数, B1, B2, B3, … BN-1。(1 <= Bi <= 100000)
第三行包含M-1个整数, A1, A2, A3, … AM-1。(1 <= Ai <= 100000)
第四行包含一个整数K,表示积水的交叉口的数目。 (1 <= K <= 30)
以下K行每行包含2个整数,X和Y,表示第X条街和第Y条路的交叉口积水。(1 <= X <= N, 1 <= Y <= M)
第K+5行包含一个整数Q,表示询问的数目。 (1 <= Q <= 1000)
以下Q行每行包含4个整数x, y, p, q,表示小Ho的起止点。起止点保证不在积水的交叉口处。 (1 <= x, p <= N, 1 <= y, q <= M)
输出
对于每组询问,输出最短路的长度。如果小Ho不能到达目的地,输出-1。
思路:
这道题的数据范围很大,所以不能用《积水的城市》里直接建图SPFA的解法。
突破口在于积水的交叉口数目K很小,只有30。所以直观上看整个城市中是有大片区域没有障碍的。对于两个交叉路口A和B,如果它们之间一处积水都没有,那么它们之间的最短路就是哈密顿距离(横纵坐标差的和)。
具体的解法 hdu_toraoh 有一篇很好的题解,分享给大家:在线笔试题解题报告系列hihocoder #1368 积水的城市2
上述题解有一处错误。只对最左的关键点(起点、终点、积水点),把x-1加入到x关键值中是不够的。我们需要对所有关键点(x, y),将x,x-1,x+1都加入到x关键值中。(对y坐标也做相同处理)
#include <iostream>
#include <queue>
#include <cstring>
#include <algorithm>
#include <map>
#include <queue>
using namespace std;
const int M = 1e3+5;
const int INF = 1e9+5;
int dir[4][2] = {{-1,0},{1,0},{0,1},{0,-1}};
struct Point
{
int x,y;
Point () {}
Point (int a,int b):x(a),y(b){}
Point go(int i) {
return Point(x+dir[i][0],y+dir[i][1]);
}
bool is_ok(int n,int m) {
return x >= 1 && x <= n && y >= 1 && y <= m;
}
};
int Alength[M],Blength[M];
int K;
int cross[35][2];
map<int,int>xaxis,yaxis;
long long dist[105][105];
bool walk[105][105];
int colLength[105];
int rowLength[105];
long long solve(int xa,int ya,int xb,int yb)
{
int n = xaxis.size(),m = yaxis.size();
dist[xa][ya] = 0;
queue<Point> q;
q.push(Point(xa,ya));
while(!q.empty()) {
Point x = q.front();
q.pop();
long long disy, disx = dist[x.x][x.y];
for (int i = 0; i < 4; ++i) {
Point y = x.go(i);
if (y.is_ok(n,m) && walk[y.x][y.y]) {
if (i == 0) {
disy = disx + colLength[y.x+1];
}
else if (i == 1) {
disy = disx + colLength[y.x];
}
else if (i == 2) {
disy = disx + rowLength[y.y];
}
else
disy = disx + rowLength[y.y+1];
if (disy < dist[y.x][y.y]) {
dist[y.x][y.y] = disy;
q.push(y);
}
}
}
}
if (dist[xb][yb] == (long long)INF*1000) return -1;
else
return dist[xb][yb];
}
void addnode(int v, map<int,int> &axis)
{
axis[v-1] = 1;
axis[v] = 1;
axis[v+1] = 1;
}
void fix(map<int,int> &axis,int n, int *oriLength,int *Length)
{
int cnt = 0;
map<int,int>::iterator it = axis.begin();
for(;it=axis.begin(),it->first<1;axis.erase(it));
it=axis.begin();
if(it->first>1) axis[(it->first)-1]=1;
for (;it = axis.end(),--it,it->first > n;axis.erase(it));
it=axis.end();--it;
if(it->first<n) axis[(it->first)+1]=1;
fill(Length,Length+105,0);
for (it = axis.begin(); it != axis.end(); ++it) {
it->second = ++cnt;
if (cnt != 1) {
map<int,int>::iterator pit = it;
--pit;
Length[cnt] = oriLength[it->first] - oriLength[pit->first];
}
}
}
int main()
{
int n,m,x,y;
cin >> n >>m;
for (int i = 2; i <= n; ++i) {
cin >> Alength[i];
Alength[i] += Alength[i-1];
}
for (int i = 2; i <= m; ++i) {
cin >> Blength[i];
Blength[i] += Blength[i-1];
}
cin >> K;
for (int i = 0; i < K; ++i)
cin >> cross[i][0] >> cross[i][1];
int Q,xa,ya,xb,yb;
cin >> Q;
while(Q--) {
cin >> xa >> ya >> xb >> yb;
xaxis.clear();
yaxis.clear();
addnode(xa,xaxis);
addnode(xb,xaxis);
addnode(ya,yaxis);
addnode(yb,yaxis);
for(int i=0;i<K;++i){
addnode(cross[i][0],xaxis);
addnode(cross[i][1],yaxis);
}
fix(xaxis,n,Alength,colLength);
fix(yaxis,m,Blength,rowLength);
fill(dist[0],dist[100]+101,(long long)INF*1000);
memset(walk,1,sizeof(walk));
for(int i=0;i<K;++i){
walk[xaxis[cross[i][0]]][yaxis[cross[i][1]]]=0;
}
cout << solve(xaxis[xa],yaxis[ya],xaxis[xb],yaxis[yb]) << endl;
}
return 0;
}