在计算机科学中,折半搜索,也称二分查找算法、二分搜索,是一种在有序数组中查找某一特定元素的搜索算法。假设待查数组是按升序排列的,搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤子数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。
折半搜索每次把搜索区域减少一半,时间复杂度为。(n代表集合中元素的个数) 。优点是比较次数少,查找速度快,平均性能好。其缺点就是要求是个有序数组。
//假设数组是升序的
1.仅用循环搞定
int BinarySearch(int arr[], int low, int high, int key)
{
int pos=-1; //查找到的位置.-1表示没有找到
int mid; //区间的中间位置
//在[low,high]区间查找等于key值的数据位置,采用二分思想,
//即先让[low,high]中间的元素arr[mid]与key比较,
//如果相等的话,查找结束,说明这个位置就是要找的位置
//如果大于key则说明可能要找的数据在[low,mid-1]区间里,在新区间继续查找
//如果小于key,则说明可能要找的数据在[mid+1,high]区间里,在新区间继续查找
//重复上述过程,如果区间为空时,即low==high+1, low>high,查找结束,此时说明查找失败。
while(low<=high) //区间为空停止查找
{
mid=(low+high)>>1; //求[low,high]区间的中间位置mid
if(arr[mid]==key) //找到了要找的数,停止查找,位置为mid
{
pos=mid;
break;
}
else if(arr[mid]>key) //可能要找的数据在[low,mid-1]中,更新high
high=mid-1;
else //可能要找的数据在[mid+1,high]中,更新low
low=mid+1;
}
return pos;
}
2.用递归搞定
int BinarySearch(int arr[], int low, int high, int key)
{
int pos=-1; //要找的位置,-1表示未找到
if(low<=high) //区间不为空,则继续查找
{
int mid=(low+high)>>1; //求出[low,high]区间的中间位置mid
if(arr[mid]==key) //说明找到了
pos=mid;
else if(arr[mid]>key)
pos=BinarySearch(arr,low,mid-1); //在[low,mid-1]区间继续查找
else
pos=BinarySearch(arr,mid+1,high); //在[mid+1,high]区间继续查找
}
return pos;
}