数组左边减去右边数值的最大差值

求数组左边减去右边数值的最大差值,如下面的数组,a[] = {5, 11, 3, 10, 6, 1, 8, 4, 3, 2};组大差值为11-1 为10;

#include <iostream>
using namespace std;

//求数组左边减去右边数值的最大差值,例如下面的数组,组大差值为11-1 为10,这个题目解法挺多,自己想到一个简单的算法,记录下
//可以申请一个同样大小的数组b,从右边开始初始化,第i个值为从i到数组后的最小值,这样初始化时候可以用到动态规划法,i与第i+1个比较就可以找到这个值
//然后求出a[i]-b[i]的最大值就可以了。其实这个方法不用申请数组b,用一个数值记录当前位置到最后的最小值就可以了,再用一个变量保存最大差值
//从后到前遍历一遍,就求出来了代码如下
int maxDiff1(int *a, int len)
{
        int min = a[len-1];
        int maxDiff = 0;
        for(int i = len-1; i>=0; i--)
        {
                if(a[i] < min)
                        min = a[i];
                if(a[i] - min > maxDiff)
                        maxDiff = a[i] - min;
        }
        return maxDiff;
}

//这个题目还可以转化下,构造一个数组b,b[0] = a[0]-a[1],b[1] = a[1]-a[2]...b[n]=a[n]-a[n+1];
//b[0]+b[1] = a[0]-a[2]..b[m]+..b[n] = a[m] - a[n+1];这样就转化成了求,数组最大子数组和的问题了
int maxDiff2(int *a, int len)
{
        int *b = new int[len-1];
        for(int i=0; i<len-1; i++)
                b[i] = a[i] - a[i+1];

        int sum = b[0];
        int begin = 0;
        int end = 0;
        int temp_add = 0;
        for(int i=0; i<len-1; i++)
        {
                temp_add += b[i];
                if(temp_add >= sum)
                {
                        sum = temp_add;
                        end = i;
                }
        }
        int temp_sub = sum;
        for(int i=0; i<=end; i++)
        {
                temp_sub -= b[i];
                if(temp_sub > sum)
                {
                        sum = temp_sub;
                        begin = i;
                }
        }
        delete [] b;
        return sum;
}
int main()
{
        int a[] = {5, 11, 3, 10, 6, 1, 8, 4, 3, 2};
        int len = 10;
        cout<<maxDiff1(a, len)<<endl;
        return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值