tf.data官方教程 - - 基于TF-v2 这是本人关于tf.data的第二篇博文,第一篇基于TF-v1详细介绍了tf.data,但是v1和v2很多地方不兼容,所以替大家瞧瞧v2的tf.data模块有什么新奇之处。首先贴上第一篇的地址:《TensorFlow tf.data 导入数据(tf.data官方教程) * * * * *》TensorFlow版本:2.1.0文章目录使用 `tf.data` 构建数据输入通道1. 基本机制 ¶...
欢呼、雀跃,Anaconda 清华源又回来了! Anaconda清华镜像已经恢复使用!目录1. Anaconda 清华源终于活了!2. 配置命令:2.1 添加清华anaconda镜像:2.1 Conda 附加库:conda-forgemsys2biocondamenpopytorch1. Anaconda 清华源终于活了!2. 配置命令:2.1 添加清华anaconda镜像:conda config --add channels h...
Chrome 解决 CRX HEADER INVALID 问题 文章目录1. 问题2. 原因3. 解决方法1. 问题近期有不少 Chrome 用户在以拖动方式(离线)安装 crx 插件时,都遇到了如下错误:2. 原因Chrome 73 版本及以后,不再支持拖动离线安装。3. 解决方法1. 把下载好的xxx.crx 的扩展名改为 xxx.zip2. 在地址栏输入 chrome://extensions/,进入 扩展程序 安装界面3. 打开 ...
国内源停止 Anaconda 镜像服务后,我们该何去何从   \quad\;随着 Python 语言的火热,使用 Anaconda 配置环境的人也越来越多,但 conda 国内镜像却宣布无限期停止服务。这使得 Anaconda 配置 Python 科学计算环境变得困难,因为 Anaconda 官方源在国外,下载速度很慢。问题:  \quad\;Anaconda 官方源的速度很慢,所以很多人使用 ...
数据标注软件labelme详解 Labelme 版本:3.11.2文章目录1. Labelme 是什么?2. Labelme 能干啥?3. Labelme 安装要求4. Labelme 安装方法5. Labelme 使用方法6. Labelme 常见问题7. Testing8. Developing9. 将 labelme 打包成可执行文件10. 致谢1. Labelme 是什么?Labelme 是一个图形界面的图像标注...
Conda 配置 TensorFlow-GPU 深度学习环境(10分钟) TensorFlow 作为一个比较流行的框架,每年都有很多的新用户。而作为一个 TensorFlow 学习者,首当其冲的便是配置 TensorFlow 深度学习环境。TensorFlow 深度学习环境一般分为 CPU 版和 GPU 版本,其中,CPU 版本比较好配置,GPU 版本比较难配置。目前,随着 Conda(Anaconda和Miniconda) 的大量使用,TensorFlow 深度学习环...
Keras 开胃小菜之 MNIST 分类 MNIST 作为机器学习领域的 “Hello Word”,让我们能够非常直接的感受到机器学习的魅力。本篇演示怎么用 keras 来搭建一个简单的 CNN 来分类 MNIST 数据集,虽然模型很简单,但准确率可不低哦:99.25%#coding:utf-8'''基于 CNN 分类 MNIST注意:在本文,keras 后端为 TensorFlow'''import numpy ...
谷歌浏览器安装(Win、Linux、离线安装) Chrome作为一款挺不错的浏览器,其有着诸多的优良特性,并且支持跨平台。其支持(Windows、Linux、Mac OS X、BSD、Android),在绝大多数情况下,其的安装都很简单,但有时会由于网络原因,无法安装,所以在这里总结下Chrome的安装。Windows下的安装:在线安装:离线安装:Linux下的安装:在线安装:离线安装:...
TensorFlow 中 Batch Normalization API 的一些坑 Batch Normalization 作为深度学习中一个常用层,掌握其的使用非常重要,本博客将梳理下各种 Batch Normalization API 的一些坑。如果你对 Batch Normalization 还不清楚,可以查看之前的博客 Inception v2/BN-Inception:Batch Normalization 论文笔记 来学习下 Batch Normalization。...
Tensorboard 与 Chrome 的部分旧版本不兼容   \quad\;TensorFlow作为一个比较流行的深度学习框架,使用的人数肯定不在少数。TensorBoard 作为 TensorFlow 编写的深度网络可视化的一把利器,其的重要性不言而喻。注:TensorBoard 需要配合 Chrome 使用。TF 作为谷歌开发的利器,  \quad\;到目前为止(2018年底),Tens...
Focal Loss 论文笔记 Focal Loss for Dense Object Detection摘要:到目前为止(2017年8月),目标检测的最高准确率都由R-CNN的衍生算法(two-stage)引领。在该类算法中,会在稀疏的目标候选位置(可能存在目标的位置)上使用一个分类器。相比之下,one-stage目标检测算法直接对原始图像进行密集的检测,这种算法可能更快,更简单,但准确率却一直没有超过two-stage目...
Lena.jpg 与图像处理的渊源 作为图像处理研究人员,相信大家一定认识下面这幅图片(下载自:https://en.wikipedia.org/wiki/Lenna):这就是Lenna本人了,全图是很sexy的,大家去看吧(http://www.lenna.org/full/l_hires.jpg)。熟悉图像处理或者压缩的工程师、研究人员和学生经常在他们的实验或者项目任务里使用“Lenna”或者“Lena”的图像。Lenna...
Windows+anaconda+labelme安装 安装步骤:首先安装anaconda开始 >> 所有程序 >> Anaconda >> Anaconda Prompt(这个就相当于)在prompt里依次输入conda create --name=labelme p
tf.estimator.train_and_evaluate 详解 tf.estimator.train_and_evaluate 是 TensorFlow 1.4.0 版中引入的 API。根据官方文档的内容,其应该是用来替代 tf.contrib.learn.Experiment 的。1. tf.estimator.train_and_evaluate 简介字面理解这个 API 就是用来 train 然后 evaluate 一个 Estimator 的,函数...
图像常用的数据增强技术(based on TensorFlow) 在图像处理的相关研究中,预处理作为数据输入管道中非常重要的一部分,在本文,我们将梳理一下常见的图像处理mnist的预处理### for MNIST# Train and Eval# step1: subtract 128# step2: div 128def preprocess_image(image, output_height, output_width, is_trai...
TensorFlow 之 SessionRunHook SessionRunHook 用来扩展哪些将Session封装起来的高级API的 session.run 的行为。SessionRunHooks are useful to track training, report progress, request early stopping and more. SessionRunHooks use the observer pattern and n...
TensorFlow 1.12.0 更新总结 TensorFlow 1.12.0 更新总结Keras 更新Keras 模型现在可以直接输出为 SavedModel 格式(tf.contrib.saved_model.save_keras_model()),输出的模型可以使用 TensorFlow Serving 来部署。Keras 模型现在支持使用 tf.data.Dataset 作为数据源来进行模型评估。tf.data 更新...
TensorFlow Estimator 中文官方文档 Estimator 是 TensorFlow 在1.4版后增加的高级API,使用其可以极大地简化开发过程,使我们更加专注于算法的逻辑。TensorFlow 关于 Estimator 的文档主要有以下:Estimator 快速入门内置 EstimatorEstimator 模型的保存特征列使用 Dataset 为 Estimator 提供数据自定义 Estimator...