TensorFlow教程
文章平均质量分 77
黑暗星球
这个作者很懒,什么都没留下…
展开
-
tf.data官方教程 - - 基于TF-v2
这是本人关于tf.data的第二篇博文,第一篇基于TF-v1详细介绍了tf.data,但是v1和v2很多地方不兼容,所以替大家瞧瞧v2的tf.data模块有什么新奇之处。首先贴上第一篇的地址:《TensorFlow tf.data 导入数据(tf.data官方教程) * * * * *》TensorFlow版本:2.1.0文章目录使用 `tf.data` 构建数据输入通道1. 基本机制 ¶...原创 2020-03-30 16:01:58 · 3710 阅读 · 0 评论 -
TensorFlow 1.11.0 主要更新
TensorFlow 1.11.0 主要更新TensorFlow 1.11.0 更新总结:为tf.keras添加multi-GPU分布式支持,fit,evaluate,predict开始支持分布式。为Estimator添加multi-worker分布式策略 及 独立的客户端支持。tf.keras的 Initializers 的默认参数发生了改变。Sequential 模型的 model...原创 2018-09-19 17:26:51 · 2809 阅读 · 0 评论 -
How to profile TensorFlow
TensorFlow是当前最常用的机器学习库之一。对TensorFlow Graph进行profile并了解各个op的耗时情况对于程序性能的提升非常有用。TensorFlow程序的profile可以通过tensorflow的timeline模块完成。但我找不到关于其的好教程。所以在这篇博文中,我将尝试按以下主题来介绍tensorflow程序的profile:如何对TensorFlow程序进行p...翻译 2018-09-25 21:23:57 · 4049 阅读 · 0 评论 -
TensorFlow Estimator 官方文档之----Feature column
这个文档详细介绍了特征列(feature columns)的详情。可以将特征列看做raw data和Estimators间的介质。特征列非常丰富,使您可以将各种原始数据转换为Estimators可用的格式,从而可以轻松进行实验。在内置Estimators部分的教程中,我们训练了一个tf.estimator.DNNClassifier去完成Iris花的分类任务。在该例子中,我们只使用了numeri...原创 2018-10-11 15:34:34 · 15677 阅读 · 2 评论 -
TensorFlow程序分析及调优
TensorFlow程序的分析及建议参考文档:https://github.com/tensorflow/tensorflow/blob/r1.11/tensorflow/core/profiler/README.md特性简单教程示例特性:分析模型架构。参数量、tensor的shape、浮点运算数、运算设备等。分析多step模型的性能。execution time, ...翻译 2018-09-22 13:31:40 · 5095 阅读 · 1 评论 -
TensorFlow程序分析(profile)实战
导入必要的包import osimport tempfileimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datafrom tensorflow.python.client import timeline建立模型batch_size = 100# placeholder...原创 2018-09-27 20:17:05 · 3371 阅读 · 1 评论 -
使用profiler分析TensorFlow程序性能
转载自:https://blog.csdn.net/kenneth_yu/article/details/77466776tensorflow profiler 主要特性使用tensorflow profiler举例高级功能AdvisorTensorFlow profiler 主要特性从r1.3版本开始, tensorflow 提供profiler模块,参见github上的官网文...转载 2018-09-27 21:03:03 · 10877 阅读 · 6 评论 -
TensorFlow Estimator 官方文档之----Dataset for Estimator
Dataset for Estimator转载 2018-10-14 17:38:46 · 1611 阅读 · 0 评论 -
TensorFlow Estimator 官方文档之----自定义Estimator
Creating Custom Estimator翻译 2018-10-14 19:18:38 · 4234 阅读 · 3 评论 -
TensorFlow Estimator 中文官方文档
Estimator 是 TensorFlow 在1.4版后增加的高级API,使用其可以极大地简化开发过程,使我们更加专注于算法的逻辑。TensorFlow 关于 Estimator 的文档主要有以下:Estimator 快速入门内置 EstimatorEstimator 模型的保存特征列使用 Dataset 为 Estimator 提供数据自定义 Estimator...原创 2018-10-14 19:28:05 · 3496 阅读 · 0 评论 -
TensorFlow 1.12.0 更新总结
TensorFlow 1.12.0 更新总结Keras 更新Keras 模型现在可以直接输出为 SavedModel 格式(tf.contrib.saved_model.save_keras_model()),输出的模型可以使用 TensorFlow Serving 来部署。Keras 模型现在支持使用 tf.data.Dataset 作为数据源来进行模型评估。tf.data 更新...原创 2018-10-16 13:48:13 · 14140 阅读 · 0 评论 -
TensorFlow Estimator 官方文档之----内置Estimator
本文以 Iris 分类问题为例,来讲述 TensorFlow 内置 Estimator 的使用。1. Iris 分类问题简介Iris dataset是Fisher先生多年前采集的样本数据,包含了3种鸢尾花、150个样本集,每个样本集包含鸢尾花的四个特征值,分别是:花蕊长度、花蕊宽度、花瓣长度、花瓣宽度。从左到右依次为:Iris setosa、Iris versicolor、Iris vir...原创 2018-10-10 15:14:10 · 11586 阅读 · 0 评论 -
TensorFlow Estimator 官方文档之----Checkpoints
本文介绍了 Estimators 模型的保存和恢复。TensorFlow提供了两种模型格式:checkpoints:该格式不可以跨语言。SavedModel:该格式可以跨语言。本文主要讲述checkpoints相关内容。关于 SavedModel 的更多细节,详见 Saving and Restoring。Estimator 模型的保存Estimators 在训练过程中会自动将以下...原创 2018-10-10 15:25:07 · 12046 阅读 · 1 评论 -
TensorFlow 之 SessionRunHook
SessionRunHook 用来扩展哪些将Session封装起来的高级API的 session.run 的行为。SessionRunHooks are useful to track training, report progress, request early stopping and more. SessionRunHooks use the observer pattern and n...原创 2018-10-24 14:24:47 · 4370 阅读 · 2 评论 -
图像常用的数据增强技术(based on TensorFlow)
在图像处理的相关研究中,预处理作为数据输入管道中非常重要的一部分,在本文,我们将梳理一下常见的图像处理mnist的预处理### for MNIST# Train and Eval# step1: subtract 128# step2: div 128def preprocess_image(image, output_height, output_width, is_trai...原创 2018-11-09 18:14:25 · 5173 阅读 · 0 评论 -
tf.estimator.train_and_evaluate 详解
tf.estimator.train_and_evaluate 是 TensorFlow 1.4.0 版中引入的 API。根据官方文档的内容,其应该是用来替代 tf.contrib.learn.Experiment 的。1. tf.estimator.train_and_evaluate 简介字面理解这个 API 就是用来 train 然后 evaluate 一个 Estimator 的,函数...原创 2018-11-13 19:48:53 · 34894 阅读 · 10 评论 -
TensorFlow 中 Batch Normalization API 的一些坑
Batch Normalization 作为深度学习中一个常用层,掌握其的使用非常重要,本博客将梳理下各种 Batch Normalization API 的一些坑。如果你对 Batch Normalization 还不清楚,可以查看之前的博客 Inception v2/BN-Inception:Batch Normalization 论文笔记 来学习下 Batch Normalization。...原创 2019-02-20 00:31:09 · 15746 阅读 · 30 评论 -
Conda 配置 TensorFlow-GPU 深度学习环境(10分钟)
TensorFlow 作为一个比较流行的框架,每年都有很多的新用户。而作为一个 TensorFlow 学习者,首当其冲的便是配置 TensorFlow 深度学习环境。TensorFlow 深度学习环境一般分为 CPU 版和 GPU 版本,其中,CPU 版本比较好配置,GPU 版本比较难配置。目前,随着 Conda(Anaconda和Miniconda) 的大量使用,TensorFlow 深度学习环...原创 2019-03-14 00:59:57 · 8249 阅读 · 1 评论 -
TensorFlow Eager 官方教程 * * * * *
TensorFlow 的 eager execution 是一个即时运行环境。在该模式下,op 在定义时即时运行(eager 模式下,op 返回具体值,而不是图节点)。Eager 模式使得 TensorFlow 的使用和调试变得简单。为了真实地感受 Eager 模式的魅力,推荐大家在交互式 python 解释器中运行本文的代码。Eager execution 是进行机器学习研究、实验的一个灵活...原创 2018-09-03 17:14:21 · 4706 阅读 · 0 评论 -
TensorFlow Estimator 教程之----快速入门
本篇将介绍 TensorFlow 中的 Estimators ———- 一个可以极大地简化机器学习编程的高级别 API。Estimators 中封装了以下几部分:训练(training)评估(evaluation)预测(prediction)输出模型(export for serving)我们既可以使用内置 Estimator,也可以编写自定义 Estimator。 注意...原创 2018-09-04 18:51:33 · 17871 阅读 · 7 评论 -
TensorFlow:怎么替换或者修改梯度?
问题我想要去替换或修改 TensorFlow 中一个 op 或 部分计算图的梯度,该怎么整?在某些情况下,这和 tf.stop_gradient() 是相对的:我们想要的不是“添加一个 op,然后在计算梯度的过程中忽略该 op”,我们想要的是“只在梯度计算时起作用(I want a calculation which is only used when calculating gradie...原创 2018-08-03 01:11:03 · 4941 阅读 · 3 评论 -
Tensorflow之pb文件分析
使用Tensorboard分析pb文件有两种方法:方法一:利用pb文件恢复计算图利用Tensorboard查看计算图的结构方法二利用tensorflow提供的tools里的import_pb_to_tensorboard.py这个工具,但是这个工具linux版本的tensorflow没有安装(Win下默认安装),需要的可以去下载[https://github.com/ten...原创 2018-06-03 17:18:28 · 15206 阅读 · 8 评论 -
TensorFlow查看ckpt中变量的几种方法
查看TensorFlow中checkpoint内变量的几种方法查看ckpt中变量的方法有三种:在有model的情况下,使用tf.train.Saver进行restore使用tf.train.NewCheckpointReader直接读取ckpt文件,这种方法不需要model。使用tools里的freeze_graph来读取ckpt1. 基于model来读取ckpt文件里的变量...原创 2018-06-03 17:20:43 · 16022 阅读 · 4 评论 -
TensorFlow中层API:Layers
TensorFlow高层API:tf.layerslayers模块属于TensorFlow的一个稳定的高层API,其源码位于tensorflow/python/layers/layers.py,其官方文档地址为https://www.tensorflow.org/api_docs/python/tf/layers ref1tf.layers里面有很多封装好的类和函数。类:Aver...原创 2018-06-04 13:32:15 · 2997 阅读 · 0 评论 -
TensorFlow Eager 模型 data 之 tfe
上一篇介绍了 tf.data API的使用方法,但没有讲到 Eager 模式下怎么导入数据。本篇将介绍 Eager 模式下使用 tf.data 来导入数据的方法。Eager 模式的教程:https://github.com/madalinabuzau/tensorflow-eager-tutorialsEager 模式开启 Eager 模式的方法:#eager 在 cont...原创 2018-06-21 15:54:28 · 1529 阅读 · 0 评论 -
TensorFlow模型载入方法汇总
转载自https://www.cnblogs.com/hellcat/p/6925757.html [TOC]一、TensorFlow常规模型加载方法保存模型tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称 功能说明 默认值 var_list Saver中储存变量集合 全局变量集合 resh...转载 2018-06-14 12:55:37 · 3702 阅读 · 1 评论 -
TensorFlow 性能优化之 Performance Guide
Performance Guide本篇主要讲述:优化 TensorFlow 代码的一些方法。本篇将分为以下几部分来讲:通用的一些优化技术 over 不同类型模型及硬件针对 GPU 的一些优化技术针对 CPU 的一些优化技术1. 通用的一些优化技术这一部分主要讲述一些通用技术(可以用于不同类型的模型 及 硬件)。这些技术将被拆分为以下几部分:输入管道优化(Input p...原创 2018-06-22 17:07:21 · 6575 阅读 · 0 评论 -
tensorflow checkpoint文件的版本
根据官方的说明,checkpoint有两个版本:1和2版本1版本2原创 2018-06-14 23:37:15 · 4559 阅读 · 1 评论 -
TensorFlow 高性能数据输入管道设计指南
本篇主要介绍怎么使用 tf.data API 来构建输入管道。目录1. 输入管道结构2. 优化输入管道的性能2.1 流水线(Pipelining)模型单个训练 step 时间的减少 依赖于 GPU、TPU 的使用。最优性能不仅依赖于高速的计算硬件,也要求有一个高效的输入管道(Input Pipeline Performance Guide),这个管道在当前st...原创 2018-06-22 23:58:21 · 14589 阅读 · 3 评论 -
TensorFlow-Slim API 官方教程 * * * * *
TF-slimTF-Slim是TensorFlow中一个用来定义、训练、评估复杂模型的轻量化库。slim中的部件可以和tensorflow中其他的部件混合使用(例如TF原生的api和tf.contrib.learn等)。1. slim模块导入方法:import tensorflow as tfslim = tf.contrib.slim2. 为什么会有slim这个模块slim...原创 2018-06-10 00:32:37 · 13752 阅读 · 5 评论 -
TensorFlow 数据读取方法总结
简介TensorFlow输入数据的方式有四种:tf.data API:可以很容易的构建一个复杂的输入通道(pipeline)(首选数据输入方式)(Eager模式必须使用该API来构建输入通道)Feeding:使用Python代码提供数据,然后将数据feeding到计算图中。QueueRunner:基于队列的输入通道(在计算图计算前从队列中读取数据)Preloaded data:用一...原创 2018-06-18 12:20:49 · 20025 阅读 · 8 评论 -
TensorFlow tf.data 导入数据(tf.data官方教程) * * * * *
上一篇介绍了原创 2018-06-19 12:47:30 · 32973 阅读 · 16 评论 -
Tensorflow中层API:Datasets
基础教程1转载 2018-06-20 12:16:48 · 329 阅读 · 0 评论 -
TensorFlow Keras 官方教程 * * * * *
Keras 简介Keras 是建立和训练深度学习模型的高级 API。它被用于快速原型、高级研究和生产。Keras 具有三个主要优点:用户友好Keras API 简单、稳定、容易调试。高度模块化Keras API 可以像搭积木一样来构建深度学习系统。易于扩展可以很容易地实现研究过程中的各种新奇想法。比如:创建新层、新的损失函数、提升state of art 模型的性能等。...原创 2018-07-17 22:13:26 · 16037 阅读 · 0 评论 -
TensorFlow 历史版本 API
TensorFlow 各个版本的 API 查询地址TensorFlow 1.9 APITensorFlow 1.8 APITensorFlow 1.7 APITensorFlow 1.6 APITensorFlow 1.5 APITensorFlow 1.4 APITensorFlow 1.3 APITensorFlow 1.2 APITensorFlow 1.1 APIT...原创 2018-07-24 22:21:03 · 9018 阅读 · 0 评论 -
TensorFlow 1.10.0版本更新
Release 1.10.0主要特征 及 提高tf.lite 开始支持 complex64。Initial Bigtable integration for tf.data.Improved local run behavior in tf.estimator.train_and_evaluate which does not reload checkpoints for evalu...翻译 2018-07-30 17:28:05 · 7189 阅读 · 0 评论 -
Tensorflow简介
基础教程1原创 2018-06-03 16:47:41 · 11230 阅读 · 1 评论