斑点(Blob)的定义: 图像特征点检测包括角点和斑点,斑点是指二维图像中和周围颜色有颜色差异和灰度差异的区域,因为斑点代表的是一个区域,所以其相对于单纯的角点,具有更好的稳定性和更好的抗干扰能力.斑点通常是指与周围有着颜色和灰度差别的区域。在实际地图中,往往存在着大量这样的斑点,如一颗树是一个斑点,一块草地是一个斑点,一栋房子也可以是一个斑点。由于斑点代表的是一个区域,相比单纯的角点,它的稳定性要好,抗噪声能力要强,所以它在图像配准上扮演了很重要的角色。同时有时图像中的斑点也是我们关心的区域,比如在医学与生物领域,我们需要从一些X光照片或细胞显微照片中提取一些具有特殊意义的斑点的位置或数量。
SimpleBlobDetector_create的原理:
1. 阈值:通过使用以minThreshold开始的阈值对源图像进行阈值处理,将源图像转换为多个二进制图像。这些阈值以thresholdStep递增,直到maxThreshold。因此,第一个阈值为minThreshold,第二个阈值为minThreshold + thresholdStep,第三个阈值为minThreshold + 2 x thresholdStep,依此类推;
2. 分组:在每个二进制图像中,连接的白色像素被分组在一起。我们称这些二进制blob;
3. 合并:计算二进制图像中二进制斑点的中心,并合并比minDistBetweenBlob更近的斑点;
4. 中心和半径计算:计算并返回新合并的Blob的中心和半径。
SimpleBlobDetector_create可按颜色,大小和形状来过滤斑点类型:
1. 按颜色:首先需要设置filterByColor =True。设置blobColor = 0可选择较暗的blob,blobColor = 255可以选择较浅的blob。
2. 按大小:可以通过设置参数filterByArea =

本文介绍斑点检测的基础概念及其在图像处理中的应用。详细解析SimpleBlobDetector_create的工作原理,包括阈值处理、分组、合并及中心和半径计算等步骤,并提供通过颜色、大小和形状过滤斑点类型的设置指南。
最低0.47元/天 解锁文章
6829

被折叠的 条评论
为什么被折叠?



