最大公约数

最大公约数

辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求最大公约数的一种方法。它的具体做法是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。

通俗的讲, 计算两个非负整数 p 和 q 的最大公约数:将 p 除以 q 得到余数 r,p 和 q 的最大公约数即为 q 和 r 的最大公约数。(若 q 是 0,则最大公约数为 p)

例:
56÷24=2······8
24÷8=3······0
此时余数为0,最后一个式子的除数8是24和8的最大公约数,也是56和24的最大公约数。
或者再算一步:
8÷0= 此时除数为0,则被除数8为最大公约数。

java代码(递归)如下:

public static int gcd(int m, int n) {
		if (n == 0)
			return m;
		int r = m % n;
		return gcd(n, r);
	}

非递归写法:

public static int Euclid (int m, int n) {
		while( n!=0 ) {
			r = m % n;
			m = n;
			n = r;
		}
		return m;
	}
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页